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 Abstract. Automated video tracking is useful in a number of 
applications such as surveillance, multisensor networks, robotics 
and virtual reality. In this paper we investigate an approach to 
tracking based on fusing the output of a collection of video 
trackers, each attending to a different feature or cue on the 
target. We show both theoretically and experimentally that the 
method used to prune the growth of target hypotheses can have a 
great impact on the trackers performance, and indirectly, change 
the benefit of using linear score combination as opposed to a 
non-linear rank combination for fusion. We also show that the 
rank-score graph defined by Hsu and Taksa can be used to select 
a subset of features to fuse to reduce classification error. 
 
 Index Terms - Sensor Fusion, Target Tracking, Multisensor 
Networks, Video Analysis, Sorting/Searching. 

1.  INTRODUCTION 

The automated tracking of designated targets in a 
video image is a general problem that has applications in 
surveillance, multisensor networks, robotics and virtual 
reality among other areas. It has however, remained a 
difficult problem to solve [8].  

In previous work [5,10], we have proposed an 
approach to tracking in which the outputs from a collection 
of trackers, all viewing the same scene, are combined to 
produce more accurate tracking. In this approach, which we 
call ‘Rank and Fuse’ (RAF for short), each tracker produces 
a ranked list (which includes a rank function and a score 
function) of matches between a target and candidate targets 
in the video which are added to a growing pool of target 
hypotheses. Once the pool reaches a threshold size, the 
scores (or ranks) assigned to each candidate by each tracker 
are fused together, and the pool is reduced (‘pruned’) to just 
the best hypotheses. This hypothesis generation approach is 
based on the Multiple Hypothesis Tracking algorithm of 
Reid [1,2,15]. However, RAF differs from most other 
approaches to fusion for target tracking in using both rank 
information and score to combine the results from different 
trackers. 

The advantage of MHT is that it defers decision 
making about correct tracks. At any time, the correct track 
hypothesis for a target may not be the one rated highest by 
the tracker, but since all hypotheses are kept, when later 
measurements support the correct track hypothesis its score 
will be raised. However, this is clearly of combinatorial 
complexity; the pool of track hypothesis will grow 
combinatorially with time as new images are taken and 
measurements are made. This can quickly surpass 
computational resources, and destroy the real-time 
performance of a tracking system, unless steps are taken to 

reduce the size of the track hypothesis pool. Therefore there 
are two issues that can be addressed to improve efficiency: 
(1) Pruning the Hypothesis Pool: A straightforward way to 
reduce the size of the track hypothesis pool with little 
decrease in the power of the approach is to remove very 
low scoring track hypotheses from the pool. Reid [15] 
proposes this in his seminal work on MHT. Other 
variations on this include keeping the top n scoring 
hypotheses, keeping the highest scoring hypothesis derived 
from the same parent hypothesis in the last n steps [2], and 
so forth. More sophisticated methods of addressing the 
complexity issue are possible [22], but pruning has a very 
low computational cost. 
(2) Fuse a Subset of Features: There are several reasons to 
consider using only a subset of the available features in a 
fusion: It is more efficient computationally to process and 
fuse a smaller set of features. Some fusion operations, such 
as a weighted sum, may cause the useful information 
presented by a subset of features to be outweighed by other 
features. Finally, it has been observed [5-7,10,13] that 
when selecting which measurements to combine from a set 
of feature measurements, better results are obtained when 
combining measurements that come from processes that 
have different ranking behaviors.  

In this paper, we present first a theoretical analysis 
of the effect of pruning the hypothesis pool, using the rank-
score graph concept of Hsu, Shapiro and Taksa [6], and Hsu 
& Taksa [7]. We show that as long as the pruning threshold 
score value px is greater than a critical value pc then pruning 
produces a much larger variation in ranks in the hypotheses 
pool. We will propose that this means that the benefit of 
score-based fusion and rank-based fusion will vary, 
depending on the pruning threshold. We then present 
experimental results that demonstrate this effect. Finally we 
also present an approach for selecting which subset of 
features to choose. 

Section 2 introduces the problem briefly. Section 3 
presents a review of literature. Section 4 investigates the 
effect of a cutoff value in reducing pruning and Section 5 
presents the experimental results. Section 6 investigates the 
use of a subset of features in fusion. Section 7 concludes 
with a discussion of all these results. 

 
2. THE PROBLEM 

We consider a system that tracks multiple moving 
targets in a video sequence. The output of the system is a 
ranked and scored list of tracks for each target. The better 



the rank and score of a track, the more the tracking system 
supports the hypothesis that this is the correct track for the 
target. This ranked list represents the decision the tracking 
system is making about which track corresponds to the 
actual target. Now consider a set of such tracking systems, 
TR1..TRm , each using different sensing modalities and/or 
tracking approaches to determine its ranked list of tracks 
(Fig. 1). Here a ranked list will include a rank function r and 
a score function s. The fusion problem we are interested in is 
to determine how and when to combine the lists to a single 
list. 

The set of N track hypotheses generated by a 
tracker up to some image frame i in the video sequence, will 
be referred to as the pool of track hypotheses, Ti. Let the set 
of continguous positive integers from 0 to a maximum value 
N-1, {0 .. N-1}, be the labels for these hypotheses. We will 
assume that each tracker agrees on this set, by virtue of a 
common hypothesis generation stage [5,10] or by the 
computational generation of a set of composite tracks [11].  

 

 
Figure 1: Mutiple Tracker Configuration 

 

 
Figure 2: Pruning T based on window w. 

 
In our RAF implementation [5], on each frame i of 

the video sequence, each tracker j makes its own 
measurements on the image. A common, MHT-like data 
association step takes the track hypothesis pool generated so 

far Ti-1 as input and produces a new set of tracks based on 
the association of measurements in the image i with the 
existing track hypotheses. A set of score values is associated 
with each hypothesis in the pool; one value for each tracker. 
The common association step generates a new track 
hypothesis pool Ti which is available to all trackers. Each 
tracker modifies its separate score value on every track in 
the pool. The pool continues to grow for a time window of 
size w (determined for example by the number of frames, the 
size of the pool, score characteristics of the pool, etc). This 
growth process is illustrated in Figure 2. 

This growth is exponential in the number of frames 
and hence needs to be winnowed down to stay within the 
limits of computational resources. At the end of the time 
window, the track hypothesis pool is considered as a set of 
scored and ranked lists, one list per score component, that is, 
one list per tracker. The rank and score information from 
each list is fused to generate a single, combined list for the 
hypothesis pool. The top scoring q hypotheses are preserved 
and the remainder deleted. The track hypothesis pool used at 
the start of the next time window consists of these top 
scoring q hypotheses. 

 
3.  PRIOR WORK 

A number of approaches have been developed for 
target tracking [1,8]. Chief among these have been Multiple 
Hypothesis Tracking (MHT) [1, 2, 15], Joint Probability 
Density Association Filter (JPDAF) [1, 14] and Probabilistic 
MHT (PMHT) [21]. One intuitive approach to improve 
tracking performance is to consider fusing information from 
multiple feature measurements [19]. A Bayesian approach to 
fusion follows naturally from an MHT or JPDAF based 
approach to tracking. In general it is assumed that the 
different feature measurements are conditionally 
independent, and therefore that the conditional probability of 
an estimated quantity S given a collection of image data I 
can be expressed using Bayes rule. In the standard 
framework for linear estimation, this gives rise to an 
estimate for S that is a linear score combination of the cues 
where the combination coefficients are inversely 
proportional to the variance [17,20]. We refer to this as the 
Bayes fusion score. This approach to fusion, in which the 
different features are evaluated separately and then 
combined, has also been called weak fusion [16]. 

However, fusion for tracking can also be viewed as 
a combination of pattern classifiers at the so-called 
measurement level [23]. This suggests that both rank and 
voting operations should be evaluated for combination as 
well as the score combination. These non-linear 
combinations have been called strong fusion [16], and there 
is evidence that humans employ both weak and strong fusion 
approaches in perception. Several strong fusion approaches 
have been proposed for video tracking, e.g., [12,18]. In [5, 
10] we proposed an architecture called the “Rank and Fuse” 
Architecture (RAF) with the purpose of evaluating fusion by 
linear score combination as well as by non-linear rank 
combination for multiple target tracking in the video 
surveillance domain. Our preliminary results showed that 
there were cases where rank combination outperformed 
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score combination, indicating that an effective multiple-
target tracker will need to use both. 

4.  EFFECT OF THRESHOLD IN PRUNING 

It has been observed in video tracking using MHT 
[2, 15] that despite the inherent exponential complexity, 
pruning with a probability cutoff value can be used to 
quickly remove many low probability hypotheses.  Indeed if 
the scene is relatively uncluttered, and with few targets, then 
when all track hypotheses are generated, the vast majority 
will receive a low probability of being a correct target track 
and few will have a high probability. This distribution of 
probabilities to track hypotheses is shown in the histogram 
of Fig. 3(a), where the vertical (φ) axis is frequency and the 
horizontal (p) axis is probability, and there is one point in 
the area udner the curve φ=ha(p)  for each track hypothesis. 

 
Figure 3:  Frequency of Probabilities for N Track 
Hypotheses in (a) Simple Env. (b) Complex Env. 
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4(a) Single, Unoccluded Target 

Track Score Histogram: Multiple Crossing Targets
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         4(b) Multiple, Crossing Targets 

Figure 4: Example Track Score Histograms for Tracking 
using Position Feature 

 
However, for a complex scene, a scene with 

multiple targets and with confusing clutter in the 
background, the distribution is different: many tracks have 
roughly the same probability of being correct. This situation 
is illustrated in the histogram of Fig. 3(b). We have verified 

that this phenomenon occurs in practice. Using the RAF 
tracker described in [10] with a target position feature 
measurement, histograms were recorded to study the 
distribution of scores to target track hypothesis. Fig. 4 shows 
two such example histograms.  

Fig. 4(a) shows the score distribution of the top 50% of 
tracks when tracking a single, unoccluded target. 4(b) shows 
the distribution of the top 50% of tracking when tracking 
multiple targets that cross each other. Scores are more 
evenly distributed in 4(b) than in 4(a); the correct choice of 
target is much less clear cut. Pruning with a probability 
cutoff value is not quite so straightforward under these 
circumstances, idealized in 3(b), as we shall demonstrate in 
the following. In fact, we will show that the selection of a 
probability cutoff px has a much greater effect on the 
variation in ranks in a complex tracking environment (3(b)) 
than in a simple tracking environment (3(a)).  
 
4.1. The Rank-Score Graph 

Let r be the rank function r : {0 .. N-1} → {1..N} 
where r(i) is the rank of the track i in the ranked output list, 
where the leftmost  element of the list is considered to have 
rank 1, the next leftmost has rank 2, etc.  Let s be the score 
function, s : {0 .. N-1} → {1..Smax} where  Smax is the 
maximum score value. The score function s(i) assigns a 
value, the score, to each track i in the list. The track with 
highest score is the track with best rank, i.e., with rank equal 
to 1. We constrain the rank to reflect the score as follows: 

s(i) > s(j) � r(i) < r(j).  
There is ambiguity when two tracks have the same score. To 
resolve this, we add the constraint: 

s(i) = s(j) ∧  i < j  �  r(i)  <  r(j).   
The score function characterizes how each tracker 

processes and rates the track hypotheses, with a higher score 
meaning that the tracker considers that the evidence supports 
that track hypothesis more than lower scoring hypotheses. 
Each tracker could use different cue or feature information, 
or combination of features, or even a different tracking 
algorithm, as long as there is a composite set of track 
hypotheses. 

Hsu, Shapiro and Taksa [6] and Hsu and Taksa [7] 
introduce an approach to characterizing the scoring behavior 
of experts. Consider the following example. A particular 
expert may assign its scores in linear fashion from highest to 
lowest. Another expert may habitually give much lower 
scores to several of its top ranked candidates. Averaging the 
scores from the two experts will always give the latter 
expert’s top candidates less emphasis. In a situation such as 
this, where the ranking behavior of the two experts is not the 
same, using the rank information in place of the score may 
yield a better combined result [4-6,9,10,13]. Hsu et al. [6,7] 
characterize the relationship that an expert habitually 
produces between rank and score as the rank-score graph  f : 
{1..N}→ ℜ , a monotonic non-increasing function f that 
relates rank and score:  

f (r(i)) = s(i). 
As discussed above, the shape of the graph can be different 
for different trackers and is a characteristic of that tracker’s 
scoring approach. So, in our previous example, the expert 
who assigns scores in a linearly decreasing fashion will have 
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a linear rank-score graph (e.g., f3 in Fig. 5). The expert who 
habitually assigns high scores to a subset of its top ranked 

candidates will have a graph that is not a straight line, but 
has a low slope for the first few candidates and a higher 
slope for the remainder. The concave-down graph f1 in Fig. 5 
is an example of this. A third class of scoring behavior is 
exemplified by f2 in Fig 5. In this case, the expert habitually 
gives relatively lower scores to a subset of its top ranked 
candidates. 

The scoring behavior that is captured by a rank-score 
graph is a characteristic of the choice of cues or feature 
measurements and tracking algorithm used by the tracker. In 
Fig. 6 we present two rank score graphs obtained using the 
RAF tracker described in [10]. In 6(a) the tracker used a 
similarity measure based on a squared difference of the 
predicted versus actual area of the target, whereas in 6(b) a 
squared difference of mean RGB color was used. Both ran 
for the same time on the same video sequence. Other 
examples are presented in [10]. 
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6(a) Using Area Difference Similarity      

Mean Color Difference Rank Score Graph
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 6(b) Using Mean Color Difference Similarity 

Figure 6: Examples of Averaged Rank-Score Graphs 
 

4.2. Pruning in Simple and Complex Environments 
First we use the information in the distributions 

3(a) and (b) to calculate the rank-score graphs for each case. 
We will assume for this paper that the score distribution is 
the same as the probability distribution: s = p = f(n). The 
results of Fig. 4 show that this is a reasonable assumption. 

We claim the rank-score graph for 3(a) (simple 
environment) is concave up and that the graph for 3(b) 

(complex environment) is linear as shown in Fig. 7. In Fig. 3 
we have that frequency φ  is a function of the probability φ= 
h(p). In that case, the rank-score graph f can be expressed as 
a function of the probability as follows: 
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Notice that for any n∈1..N, f a (n) ≤  fb(n) since if we cut the  
graph at p* on the y-axis in Fig. 7, then   
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As p moves from 1 to 0, the change in rank in case (b) is 
uniform, whereas the change in rank in case (a) slowly 
increases and increases more rapidly after a certain point. 
Call this point pc (see Fig. 7). 

 
Figure 7: Rank-Score Graphs fa and fb superimposed 

 
We can show that as long as px > pc then the effect of 
selecting a probability cutoff px produces a much larger 
variation in ranks in fb than in fa. In fact in Appendix A we 
show that  

f -1b(px) - f-1
b(px + h) >> f -1a(px) - f -1a(px + h)    (3) 

In Appendix B we present an example demonstrating this for 
two idealized frequency distributions.  
 The implication of this result is as follows: the choice of 
threshold value can have a big impact on the number of 
ranks in fb than in  fb through the use of rank-score graphs. 
Hence, it has tremendous impact on the performance of the 
tracker.  Hsu and Taksa [7] show that the form of the rank-
score graph determines whether a rank combination or score 
combination produces a better result. Hence, our theoretical 
results predict that for a complex environment, the benefit of 
score based fusions and of rank-based fusions will vary 
depending on the hypothesis pool pruning threshold.  
 

5.  EXPERIMENTAL INVESTIGATION 

In [5,10] we described the RAF tracking system, which 
uses color, position and shape to track moving targets. We 
modified that tracking system to do a comparison of Bayes 
fusion only versus a combination of Bayes fusion and fusion 
by rank combination. The two options were evaluated by 
comparing their result with ground truth data for the video 
sequence. 
 
5.1. Implementation 

Foreground objects are extracted from each frame 
of the image sequence using the non-parametric background 
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Figure 5: General Classes of Rank-Score Graphs



estimation technique of Elgammal et al. [3]. The regions are 
passed to the three component trackers in the RAF system. 
Color, location and shape information was collected by 
applying a tracker-specific measurement: 
(a). Color Tracker: fcor(cj ) = µrg(cj), average normalized 

RGB color of cj. 
(b). Location Tracker: floc(cj) = the image location of the 

centroid of cj. 
(c). Shape Tracker: fsha(cj) = area(cj), the area of the image 

covered by cj in pixels. 
For each frame i in the video sequence, a common MHT 
based hypothesis generation module associates these 
measurements with the set of existing track hypothesis Ti.  

Any track hypothesis which meets the gating criterion for a 
component cj is associated with that region. Each of the 
three trackers applies its similarity function to determine 
how well the region fits that target hypothesis. A score for 
the new track hypothesis is generated based on the original 
hypothesis score and the similarity value. 
 The pool of track hypotheses grows combinatorially and 
needs to be pruned to stay within resource limits. The 
resource limits are represented by a nominal pool size nT:  

( | Ti | >  nT ) ���� Prune Ti down to size nT 
To get the best track hypotheses for each target candidate 
set, the scores and hence ranks from each of the separate 
trackers are fused in two ways.  
(i). Average rank fusion: Let rk,f be the rank of track 

hypotheses tk  according to tracker f : 
Sk,avrank =

3
1  (rk,color + rk,location + rk,shape ) 

We will refer to this as the RAF (combination) score.  
(ii). Linear score fusion: Let sk,f be the score for tk by 

tracker f and σk,f  be the variance: 
sk,linscore = ( qk,col sk,col + qk,loc sk,loc + qk,sha sk,sha ) 

where 
qk,f  = 
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We will refer to this as the Bayes (combination)  score.  
The top scoring track hypotheses for each target are then 

evaluated against the ground truth data. The evaluation 
criterion is a performance value calculated as a sum of 
squared differences between the image location of each 
component for an image in the sequence in a ground truth 
target and the component in that image for the track 
hypothesis. Whichever fusion scores lower by this measure 
is considered the better fusion and this is the one adopted for 
this target. If both score the same, then the Bayes score was 
used. Different fusions may be adopted for different targets, 
and of course, a track hypothesis might have several 
different fusions used on it over the course of successive 
pruning events. The image sequence index number and type 
of fusion used is recorded for each track hypothesis. 

Once the fusion calculation is completed, the top 
scoring track hypotheses for each target are kept, the rest are 
deleted, and the tracking continues to the next frame and 
window. 

 
5.2. Results 

The RAF tracking system was used to perform the 
evaluation above on a number of video sequences. The 
results from two such sequences is presented here. Video 
sequence 1 and 2 were indoor sequences. Sequence 1 was 50 
frames and sequence 2 was 100 frames long at approx. 10 
fps. Sequence 1 was of a single, unoccluded moving target. 
Sequence 2 was of two targets in a complicated mutual 
occlusion. 
 Figure 8 shows the results of the comparison for each 
video sequence. For example, in 8(a) for a cutoff value of 50 
(the best 50 hypothesis preserved), the Bayes score 
produced a result closer to the ground truth in 59% of all 
fusion operations, the RAF combination produced a better 
result in 31% of all operations, and in 10%  both were equal. 
The fact that the combination was superior in any fusions at 
all indicates that rank combinations can improve tracking 
performance. In Sequence 1, the Bayes score is better for all 
values of the cutoff above 1. However, in Sequence 2, we 
note that depending on the cutoff value, sometimes Bayes 
alone has the high percentage of better fusions and 
sometimes the RAF combination is better.  
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Figure 8: Graph of %Better against cutoff size 
 

6.  SELECTION OF CUES FOR FUSION 

If we have a set of tracking systems, as in Fig. 1, 
each with its own rank-score graph fk , then we propose that 
a better fusion result is obtained when a subset of features 
with different rank-score graphs is combined than when a 
subset with similar rank-score graphs are combined. Recall 
that the rank-score graph is monotonic. A concave-up rank-
score graph (f2 in Fig. 5) would assign few ranks to the top 
scoring tracks and many to the lower scoring tracks, whereas 
a concave-down rank-score graph (f1 in Fig. 5) would assign 
many ranks to the top scoring tracks and few to the lower 
scoring tracks. We will refer to concave-up and down 
members of this family as complementary graphs with 
respect to the ideal rank/score graph f3 in Fig. 5. Trackers 
with complementary rank-score graphs should be 
distinguished from trackers whose output is negatively 
correlated. The latter is a relationship between the scores the 
trackers assign to a specific track, whereas the former is a 
relationship between scoring behaviors, irrespective of the 
track being scored. Trackers may be correlated or 



independent and still have complementary rank-score 
graphs. 

In general each tracking system TRk of Fig.1 may 
have a complicated relationship between the score 
associated with a track hypothesis and the real underlying 
probability of that track. The result is that the measured 
rank-score graph for TRk may differ significantly from the 
graph predicted from the probability distribution. Figure 9 
illustrates two complementary rank-score graphs, f1, and f2, 
versus the actual rank-score graph fi for the target rich case. 
We will refer to this actual graph as the ideal graph. Let us 
consider the effect of pruning the set of track hypotheses at a 
cutoff probability px.  

If the actual rank-score graph fi was known, then 
this would produce a cutoff at rank rx of the set of track 
hypotheses. However, each tracker will have a different, and 
maybe limited, view of the problem, and may end up with a 
rank-score graph either of the form of f1 or  f2. With f1 a rank 
cutoff of rh > rx is produced. This would be equivalent to a 
probability cutoff of pl if the ideal rank-score graph was 
used. Similarly with f2 the rank cutoff is rl <  rx which is 
equivalent to ph with the ideal rank-score graph. 

 

 
Figure 9:  Actual (f1, f2) vs. Ideal (fi) Rank-score Graphs 

 
Figure 10: Complex Environment Distribution with Cutoff 

Points using f1 (pl) and f2 (ph) 
 
Fig. 10 shows the effect of selecting a probability cutoff 

px when using f1 or  f2 instead of the ideal rank-score graph fi 
for the target rich case. We will take the special case 

φ=hb(p)=
2

0φ  as an example. Fig. 11(a) shows a standard 

classification Venn diagram. We can use this to quantify the 
effects of a tracker using a rank-score graph of the form f1 or  
f2 instead of the actual rank-score graph fi. Let us assume 
that a probability cutoff px is selected for which the False 
Positives (FP) and False Negatives (FN) are zero, meaning 
that px perfectly separates the track hypotheses into true and 
false cases (Fig. 11(b)).  

 
Figure 11:  Classification cases: General (a), Ideal (b), using 

γ1 (c) and using γ2(d) 
A tracker using px and rank-score graph f1 is cutting at a 

rank rh which, as shown before, is equivalent to cutting the 
actual rank-score graph at pl < px. This results in the 
classification diagram in Fig. 11(c), where the FPs have been 
increased from zero. From the distribution in Fig. 10 we 
have that 
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Similarly, a tracker using px and rank-score graph  
f2 is cutting at a rank rl which, as shown before, is equivalent 
to cutting the actual rank-score graph at ph> px. This 
produces the classification diagram shown in Fig. 11(d) 
where the FNs have been increased from zero. In this case 
we have that  
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We can conclude from this that when a tracking module 
employs a rank-score graph that is different from the actual 
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rank-score graph, it will increase its FPs or FNs such as 
formula (4) and (5) for f1 and f2 respectively. However, it is 
possible to fuse results from more than one tracking model 
to alleviate this effect. 

If the complementary rank-score graphs f1 and f2 are 
added together they produce a rank-score graph that is much 
more similar to fi and will hence minimize the false positives 
and false negatives with respect to fi. We will define a fused 
rank-score graph f* simply as (and there are other definitions 
possible): 

                    
2

)()()( 21
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And we note that for the case f2 = 2fi - f1 (i.e.,  f1 is f2 
mirrored in fi), we have from (4): 
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and similarly from (5): 
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In general, two rank-score graphs won’t be perfectly 
complementary as above, but if their sum is closer to actual 
rank-score graph, then the FPs or FNs will be reduced. From 
the expressions above, we can say that  

 
If  (fi ° f -1

* ) (px) < (fi ° f  -1
2)(px)  

then FN will be reduced with fusion, and  
  If  (fi ° f -1

*)(px) > (fi ° f -11)(px) 
   then FP will be reduced with fusion. 
 

Hence in choosing a subset of features to fuse when 
tracking in complex scenes, selecting features with 
complementary rank-score graphs will produce a better 
result that minimizes false positives and false negatives. 
 

7.  CONCLUSION 

In this paper we show theoretically and experimentally 
that for an MHT based approach to hypothesis generation 
and pruning in multitarget tracking, the selection of pruning 
threshold can have a great impact on the tracker’s 
performance, altering the rank-score characteristics of the 
pool of hypothesis. This change can affect the benefit of 
using a score based sensory fusion method over a rank-based 
method.  
 The experiments reported here used a ground truth file 
to evaluate the best selection of rank or score fusion 
operations. However, the ultimate goal is to build an RAF 
tracking system that select the fusion strategy and apply the 
optimal fusion operator to each candidate target set on a 
frame by frame basis. The evaluation in this paper has been a 
step in this direction. Our next step is to evaluate the uses of 
the pruning threshold information, and the form of the rank-
score graph, as a predictor of which fusion operation will 
yield the better result. 

 We also present an approach to selecting which subset 
of features to fuse for best results. We present a criterion to 
use to determine whether a fusion between two features will 
reduce the classification error in tracking. This also uses 
substantially the rank-score graph concept, and our goal is to 
also evaluate this experimentally. We will also explore the 
case where the ideal rank-score graph may not be the simple 
linear function as in f3 in Fig. 5 or fi in Fig. 9. In this case, the 
concept of complimentary graphs is generalized with respect 
to a new ideal rank-score graph fi

*. Moreover the notion of 
concave-up and concave-down will have to be defined 
relative to this new ideal rank-score graph fi

*. 
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APPENDIX A: Proof of Formula (3) in Section 4.2 
Using the definition in (1), we have 
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 = f -1a(px) - f -1a(px + h)   (definition) 
 
APPENDIX B: Example. 
As an example, suppose that the actual distributions for two 
cases were φa(p) = (-φ0)p+ φ0 and φb (p)= 

2
0φ  in Fig. 3. 

First, we establish the rank-score graphs for each case as in 
Fig. 7. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The rank difference in each graph given a cutoff probability 
px is therefore: 

 
 
 
 
 
 
 
 
 
 
 
 

Inspecting the ratio of these two rank differences, we get: 
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Solving for p and  
letting µa=f -1a ,  we have 
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