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Abstract – It is important to be able to guarantee the safety 

and effectiveness of robot behavior in applications where 

robots must operate alongside people or in hazardous 

situations. A modeling framework based on port automata 

and asynchronous communication is introduced in this 

paper. By looking at the internal transitions between port 

communications, an analysis approach is developed that 

removes the combinatoric issues of looking at an 

asynchronous combination of robot and environment. An 

example application of the approach to wheel slippage in a 

mobile robot is presented.  

I. INTRODUCTION 

Robot systems are starting to play an important role in 

military and in other government applications such as disaster 

recovery, and search & rescue. They are also appearing in the 

consumer area, e.g., Sony AIBO, Roomba, etc.  The issue of 

being able to guarantee the safety and effectiveness of robot 

behavior is therefore coming increasingly to the forefront, 

especially when robots must operate near people or in 

hazardous situations. There is an analogy with the history of 

civil engineering: bridges and other major structures were 

constructed for thousands of years before the necessary 

mathematical tools were developed to guarantee their 

performance. In the 19
th

 and 20
th

 centuries, as such projects 

became more ambitious, some spectacular failures ensued due 

to the absence of effective performance guarantees. 

Although formal modeling methods have found success in 

many computer science applications [5], they have been less 

prevalent in behavior-based robotics. The behavior-based 

robot programming paradigm [1] has achieved wide popularity 

and success in addressing the construction of robust robot 

systems that can operate in unstructured environments. 

However, the behavior-based approach uses assumptions quite 

different from those used generally in designing software, and 

this complicates the formal analysis of these systems. One key 

assumption is the reliance on emergent behavior. The resulting 

open-ended nature of the list of potential robot-environment 

interactions is a serious issue for formal analysis. 

In this paper, we introduce a model-checking approach to 

the analysis of a behavior-based robot in an unstructured 

environment, with the objective of determining performance 

guarantees for the overall system. The principle research 

contribution in this paper is the development of an efficient 

approach to handle the open-endedness of dynamic robot-

environment interplay. The ultimate objective of the work is to 

develop a software tool that can be used within Missionlab [13] 

to build mobile robot controllers that operate in unstructured 

and dynamic environments with formally guaranteed 

performance.  

II. EXISTING WORK 

The AI community has developed a number of approaches 

to reasoning about actions and their effects [16]. These 

approaches focus strongly on the representation of the 

behavioral schemas, and consider the robot to be the primary 

generator of events. The role of the environment is simply to 

respond. The situated automata approach [6] acknowledges the 

role of environment – but the environment model is 

represented using a modal logic of knowledge. The theoretical 

limitations of this approach are still unclear, since it requires 

automatically producing a „program‟ from a modal logic 

description – a very difficult problem [3].  

The landmark work by Ramadge & Wohnam [14] 

introduced a formalism and methodology for using a finite-

state automaton (FSA) to control a discrete event plant – 

discrete-event control (DEC). There have been a number of 

extensions to this concept, including the addition of concurrent 

models as well as addressing the problems of integrating 

continuous and discrete control. There are also a number of 

successful automaton-based methods for representing robot 

programs. These include [9] as well as Georgia Tech‟s 

MissionLab [13]. [7] integrates a process description 

vocabulary with the FSA theory of Ramadge & Wonham. It 

associates an FSA-semantics with the process operators of [10] 

allowing an elegant integration with DEC results.  

To model the emergent behavior of a behavior-based 

system, it is necessary to have models of salient aspects of the 

environment.  It is reasonable to expect that most of the 

processes at work in the robot‟s environment are current and 

asynchronous with respect to the robot. However, FSA 

semantics for concurrent processes has the fundamental issue 

of combinatorial state explosion: combining FSAs into a single 

FSA requires computing a Cartesian product of states, a 

process whose complexity is exponential. This is a practical 

limitation on its usefulness.  

The Port Automata (PA) model [17] exploits message 

passing between concurrent automata to simplify the analysis 

of concurrency. Each process can be analyzed separately up to 

a message passing event – avoiding the need to compute a 

Cartesian product. We exploit this approach to combat the 

computational complexity of our problem. 
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III. UNSTRUCTURED ENVIRONMENT 

An unstructured environment contains a large number 

of phenomena with which a behavior-based system can interact, 

and the richness of the resulting emergent behavior is strongly 

related to the richness of the environment. Thus, to make 

performance guarantees about the behavior, we have to model 

all the interactions between the environment and the robot. 

Consider a very simple robot controller and a very simple 

environment modeled by the two 3-state automata shown in 

Figure 1. For example, the controller FSA might control wheel 

velocity, and the environment FSA might model the interaction 

of the wheel with the ground.  

The Controller and Environment will share events 

(the arrows in the diagram), and this specifies their potential 

interactions [14, 12]. In the wheel and ground example, this 

interaction would be the physical interface between wheel and 

ground. It is reasonable to assume that the number of shared 

events is much less than the total number of events. In the case 

where there are no shared events, that is, Controller and 

Environment are completely asynchronous, then the 

combination of the two automata, the shuffle product 

automaton, has 9 states. If one more 3-state automaton is added 

to the environment model then there are 27 states, illustrating 

the combinatorial nature of the shuffle product complexity. 

Shared events reduce the total number of states; however, there 

will be few shared events. 

 
Figure 2: Controller & Environment Automata Models 

This also illustrates that interaction complexity and emergent 

behavior is a function of environment as well as robot, and 

even a 3 DOF mobile robot will encounter substantial 

complexity in a sufficiently rich and realistic environment. 

IV. PORT AUTOMATA 

A port automaton (PA) is a finite-state automaton 

equipped with a set of synchronous communication ports. The 

focus in this work will be restricted to deterministic PAs, since 

[17] show that any non-deterministic PA can be built from a 

network of deterministic PAs. Networks of deterministic 

processes, e.g, Kahn networks, have appeared in robotics 

before [18, 9, 13].  

       Formally we can write a port automaton P as: 

          P = ( Q, L, X , ,  ) where                               (1) 

 Q  is the set of states 

 L   is the set of ports 

 X = ( Xi | i L )  is the event set for each port 

    Let  XL= { (i, Xi) | i L }  i.e., a disjoint union  

  : Q XL 2
Q
 is the transition function 

  = (i | i L) i : Q  Xi output map for port i 

   2
Q 

is the set of start states 

For example, ( q,(1,a) )= {p}, 2(p)=b, states that in 

state q, if there is an input a on port 1 then the automaton 

transitions to state p, and  writes b to port 2. All 

communication involves a “swap” of values between the 

sender and receiver. One or more of these values could be “#”, 

the trivial or blank value, in which case the transfer of 

information is in one direction; an input operation only or an 

output operation only.  

Let A(q) be the set of ports that are able to 

communicate in state q (the active ports): 

A(q) = { iL |  (i,x)  XL, (q,(i,x))    } 

Note that this includes output as well as input activation.  

Interaction is modeled explicitly via port 

communication.  For example, if the wheel and ground 

example of Fig. 2 is modeled using port automata, there would 

be a pair of channels over which the wheel and ground 

automata communicate. The wheel controller automaton might 

transmit wheel torque and surface contact information to the 

ground model over one channel. The second channel could be 

used for the ground to transmit back reaction data for sensors 

modeled within the wheel controller.  Note that the internal 

processing of the ground automaton on receiving its input until 

it produces a result value can be analyzed separately from the 

processing in the wheel controller automaton. 

Consider two port automata, P1 and P2 (Fig. 2). Let 

some of the ports on P1 and P2 be connected as described by a 

one-to-one mapping c. These connected ports are the only 

channels over which the two automata can communicate. An 

expression will be developed for the internal processing of P2 

from when it first communicates on one of its connected ports 

to when it communicates again.  

Assume that each PA has a subset of its ports that are 

self-connected. A write to one of these ports is the equivalent 

of storing to an internal variable, which could be later retrieved 

by a read from that port. Let S be the set of self-connected 

ports, and let E be the set of ports available for external 

connections, where L = E   S and E  S = .  In that case, 

the port map between P1 and P2 is c: E1E2. 

 
Figure 2: Two connected Port Automata 

Consider a single communication event from P1 to P2, 

occurring in state q Q2 on the port i E2. The states reached 

by a single transition from q may include some states in which 

only self-connected ports are active, and some in which 

external ports are active. The latter indicates that the automaton 
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is ready to communicate again. The former indicates that 

internal processing is still in progress. Each additional 

transition from such a state again brings the alternatives of 

internal processing or a potential communication. This 

reachability can be captured by an internal reachability 

function )),(,( xiq


that maps the state and communication 

pair to the set of states eventually reached after internal 

communication, and in which the next external communication 

event could occur. 

Let I(q) and K(q) be defined as the sets: 

I(q)  = { qk | qk (q,(i,x)) & A(qk)  E =   } 

K(q)  =  { qk | qk (q,(i,x)) & A(qk)  E   } 

The internal reachability function is then: 

    )),(,( xiq


 = K(q)   


)( )(

)),(,(
qIp EpAj

vjp
 

      (2) 

where x Xi and v Xj.                 

A port connection automaton PC consists of two port 

automata P1 and P2 with their ports connected by a one-to-one 

mapping c and is written P1 |c P2.  Whereas analysis of the 

shuffle product of P1 and P2 involves generating and handling 

Q1Q2, analysis of the port connection automaton involves 

handling Q1 and Q2 separately using the internal reachability 

function, until they communicate, after which they can be 

handled separately again. A computation of P1 and P2 can be 

modeled as a sequence of communication points, each 

separated by an application of ̂  for P1 and for P2. 

V. AUTOMATA NETWORKS 

To specify networks of PA, we employ a notation of 

processes and process composition operations similar to the 

well-known CSP algebraic process model of [4, 15]. However, 

unlike CSP, but like [7, 10], the notation can be seen as simply 

a shortcut for specifying automata; A process is a port 

automaton, and a process composition operator is a port 

connection automaton.  

Processes can take some initial parameter values to guide 

their computation and may produce some values at the end of 

their computation (if and when they terminate) that can be 

passed on to other processes. By Pu<v> is meant a process P 

that takes initial values u and produces results v. The semantics 

of P is a port automaton P constructed by considering the 

initial and result values to be conveyed over ports. A basic 

process [4] is atomic, and corresponds to a port automaton 

defined directly by transition function. These are processes 

with simple and easily characterized behavior: e.g., Delayt is a 

process that terminates t seconds after it has been started; 

RanR<v> is a basic process that returns a random vector v 

from a set R.. We also introduce Inc<x> and Outc,x as basic 

processes to perform input and output, respectively, on port c. 
 Processes are combined together using composition 

operators. Inc1<x>;Outc2,x is process that inputs a value on 

port c1 and then outputs it on port c2. This is a port connection 

automaton of two automata, corresponding to the basic input 

and output processes, in which the first automaton executes to 

a termination state, at which point the second one starts. A port 

communication needs to occur to let the second process know 

when to start, and to transfer any values from the first to the 

second process. The semicolon denotes sequential composition. 

In concurrent composition, both automata execute at 

the same time. For example (Outc2,x  | Inc2<x> )  is a port 

connection of two automata, one that outputs a value on its port 

c2 and one that inputs a value from its port c2; we establish the 

convention that similarly named ports are connected to each 

other. The vertical bar denotes concurrent composition. 

To analyze a network of processes, it is necessary to 

understand how that network changes as time progresses and 

processes terminate and/or are created. This is the process-

level equivalent of the PA transition function, combined with 

the axioms that define port-to-port communication. We adapt1 

CSP notation and use the “” symbol to denote this process 

transition function, e.g.  P;Q  Q when P terminates, by the 

definition of synchronous composition (similar to the evolves 

operator of [10,11]).  The following process expression follows 

directly from the definition of PA port communication2: 

                 ( Inc<v> ; Pv | Outc,v ; Q )  ( Pv | Q ) 

This expression brings out the fact that the basic PA 

communication paradigm is a variation on synchronous 

communication. To analyze emergent behavior it is necessary 

also to support asynchronous communication. We introduce a 

process composition operation that allows us to explicitly 

model the timing of asynchronous communication. 

 A disabling composition of two processes is written 

(P#Q) and denotes a port connection automaton of P and Q 

connected so that whenever P terminates, it causes Q to 

terminate, and vice-versa. The connection entails: transmitting 

a message on a designated port on termination; rendering that 

port active in every transition; and, the reception of the value 

on that port taking the automaton to a termination state. 

 We define asynchronous communication between 

processes P and Q in a network T as follows: 

P = ( Inc<v> # Delayt1 ) ; Delayt2 ; P                                    

Q = ( Outc,v # Delayt3 ) ; Delayt4 ; Q 

T = ( P | Q ) 

P repeatedly offers to accept a message for some time t1 and 

then does some internal processing represented by a delay of 

time t2. Q similarly repeatedly offers to send a message for 

time t3 and then does internal processing represented by t4. As 

long as t1+t2t3+t4 then (P|Q) will repeatedly result in a 

network of concurrent In and Out processes that will 

communicate on c. 

VI. ROBOT CONTROL NETWORK 

A simple example of a random wander behavior 

design pattern can be defined as: 

         Wander = RanR<v>  ;  ( Movev # Delayt ) ; Wander          

where Movev  is defined as a process that causes the robot to 

move with positive velocity v. Informally the behavior of 

Wander is to select a random velocity, then cause the robot to 

move in that direction for a fixed time t, and then repeat the 

                                           
1 In CSP, an event follows the  operator. 
2 The precedence order is: sequential, disabling, concurrent. 



   

process forever. Consider how Wander behaves under the 

process transition function: 

    Wander = RanR<v>  ;  ( Movev # Delayt ) ; Wander 

       ( Movev # Delayt ) ; Wander                  for some vR 

      Wander                                                       after time t        

A trace of a CSP process is the finite sequence tr(P) 

= [a.b.c…] of events the process has engaged in up to some 

moment in time. An event here is simply the termination of a 

process, and the label for the event will simply be the name of 

the process. The set of traces of Wander are of the form: 

   tr(Wander) =  

      pref  { s | s = [ ( RanR<vi> . Delayt . Movevi )
i 
],  i1 }    

where pref S extends the set S to be prefix-closed. We define 

the set of traces associated with a transition operation, 

tr(PQ), to be the smallest set of traces generated in 

transitioning from P to Q. For example,  

   tr(WanderWander) =   

        pref { s |  s = [ RanR<v> . Delayt . Movev ], v R }    

This allows us to capture the “periodicity” in tr(Wander) 

above: tr(Wander)= tr(WanderWander)
i
, i1. 

These transition and trace definitions give a formal way to 

calculate what was informally stated in the previous section.  

However, if we want to establish performance guarantees, what 

is missing here is a model of the environment in which 

Wander operates. 

VII. INTERACTION WITH ENVIRONMENT 

Consider modeling the physical robot base as it moves 

around: For now, the environment will consist solely of the 

state of the base, including position and velocity. The actuator 

model is specified by the processes Move and Base: 

                             Movev = Outcv,v ; Movev        

This is a simple interface between the controller and the 

physical robot base: a velocity command is written to a port cv. 

The model of the physical robot base is defined by 

          Basep,v = (Incv<u> # Movingp,v<q>) ; Baseq,u 

The In process receives the velocity control input u and applies 

it to the robot base starting at the position q when the input was 

received. The base continues Moving until it receives the next 

control input. 

     Movingp,v<q> = (Atp # Delayt ) ; Movingp+vt,v<p+vt> 

The process Atp represents the current position of the base. In 

this network, the base remains at a position p for some small 

time t and then asynchronously and instantaneously transitions 

to the position p+vt. Thus, the values of the position state 

variable are restricted to lie on a grid, though the grid can be 

made as fine as desired by making t as small as necessary. 

Note that the same process terminology has been used to 

describe the physical world as was used to describe the 

controller.  

We can now analyze how Wander behaves in this 

environment (a model-checking analysis) by looking at the 

concurrent composition S1: 

                       S1p,v = ( Wander | Basep,v ) 

Recall: each process is a port automaton, and the 

networks built using composition operators are port connection 

automata. That means, for S1 we can employ the internal 

transition function to analyze Base and Wander separately 

until they communicate and thus avoiding, as mentioned, the 

combinatorial issues associated with their shuffle. However, 

the special control port we introduced for disabling 

composition is active in every process on every transition. For 

this reason, when applying the internal transition function, we 

omit any special ports introduced for composition operators. 

Instead, we will use the process transition operator and traces 

to capture & analyze sequencing, and we retain the 

computational advantage of using the internal transition 

function to go from external communication to the next 

external communication in each automaton. We can rephrase 

the internal transition function in terms of the process 

transition operator: 

̂ (P) = { Q | P  Q=f(Q1,…,Qn),  

                                   i 1,…,n, Qi=In  Qi=Out } 

That is, we look for the first network that we can reach from P 

via the process transition operator and which contains an input 

or output operation. When P is analyzed separately from other 

processes, then it can only transition from such a Q due to 

disabling composition with a process like Delay that disables 

the pending communication. If we use the asynchronous 

communication pattern described in the previous section, (and 

used in Base above) then the effect is that P repeatedly 

transitions to a network Q that is ready for communication. 

This periodic nature means that Q is a fixpoint of the process 

transition operator, defined here as   Q  ̂ (Q). We associate 

a fixpoint with a process network as follows: Q is a fixpoint of 

P, written Y(P)=Q,  iff ̂ (P)=Q and Q  ̂ (Q). The trace 

tr(Q Q) is the trace of the fixpoint, we define ftr(Q)= tr(Q 

Q). 

The fixpoints for each component of S1p0,0 (S1 with 

start position p0 and start velocity 0) are obtained as follows: 

         Y(Wander) = (Outcv,v ;Movev# Delayt ) ; Wander                 

                                                                            for some v R 

         Y(Basep0,0) =  ( Movingp,v<q> # Incv<v> ) ; Baseq,v 

and the behavior of S1 up to this first communication point is 

captured by the set of traces T1=ftr(S1p0,0), and tr(S1p0,0) = T1
i, 

i1. However, T1 contains information about all the processes 

in the controller and the sensory and motor interface, as well as 

the state of the environment. We need to restrict the trace 

information to just the state of the robot and environment. In 

this example, this is simply the position of the robot (the Atp 

process), and the time (the Delayt process).  

The restriction of a trace tr to a set S is written trS 

and is defined as the transformation of tr by eliminating all 

events relating to processes in a given set S, but preserving the 

order of remaining events. Let us define State={At, Delay}: 

T1  State = pref { s | s = [ Delayt  . Atp0
  
]}  

There will eventually be a transfer of information across the 

port cv, described by the transition: 



   

                  S1p0,0  ( Wander | Basep0,v) = S1p0,v 

The analysis of fixed points of each component can be repeated. 

Y(Wander) remains the same, but 

Y(Basep0,v) =  ( Movingp0,v<q> # Incv<v> ) ; Baseq,v 

and the trace of this fixpoint is 

    ftr(S1p0,v)  State = pref { s | s = [ Delayt  . Atp0+vt
  
] } 

and the traces of S1p0,v before the next communication are 

     tr(S1p0,v)  State = pref { s |  

                                    s=( [ Delayt  . Atp0+ivt
  
] ) 

i
 i1 } 

where (Ai)
i
 is the sequence A0.A1.A2…Ai-1. There is an intuitive 

ordering on the sets in ftr(S1p0,v)  State based on the length of 

the trace, with the longer traces representing a greater 

movement of the base from the start point. We will denote the 

longest trace in a set of traces tr as tr. 

 We can iteratively generate fixpoints for S1. Let us 

denote these as F1, F2, …,Fn, where F1=Y(S1p0,0), 

F2=Y(S1p0,v0), F3=Y(S1p0+iv0t,v1), etc. The traces for F1 become 

prefixes for the traces in F2, which in turn are prefixes for 

those in F3, etc. The last position for the largest trace of F2 

(p0+iv0t) becomes the first position of every trace in F3, etc. 

The final position of the base can be thus captured by the 

concatenated trace of the maximum of each trace set: 

 tr(F1). tr(F2). tr(F3).,…,. tr(Fn) 

The function last(tr) returns the rightmost element of a trace. 

      last(tr(F1)).last(tr(F2)).,…,. last(tr(Fn)) 

                      =  Atp0+n.v0.t . Atp1+n1.v1.t .   .…   . Atpm+nm.vm.t 

This is the definition of a random walk, pn = pn-1 + nvn-1t . A 

random walk on a 2D grid has a probability of unity of 

eventually visiting every point on that lattice.  

 Let us consider the computational effort in working 

out the answer. If we map the basic processes in S1 to states, 

then we arrive at 5 states in the controller Wander and 6 states 

in the environment Base. This mapping of processes to states 

may be off by a constant factor, but it suffices to show the 

reduction in computational complexity. The shuffle product 

analysis approach involves generating and exploring 30 states 

therefore, most of which involve no interaction between 

controller and environment. Our analysis involved checking 

only the 5 states in Wander and then the 6 in Base. However, 

we had to treat Base twice: once for the initial conditions 

(before any communications), and once after the first 

communication has happened. This gives us a total of 17 states 

explored, and improvement of 43%. The initial conditions just 

verify that no motion occurs before the first velocity command. 

By restricting our attention to the first communication events, 

we could gain an improvement of 63%. 

VIII. TERRAIN FACTORS 

A very common problem with wheeled bases, outdoors or 

indoors, is slippage between the wheel and the terrain [2]. A 

process network that allows modeling of a number of different 

slippage conditions for a base with two drive wheels will now 

be introduced. 

The Base process is redefined as follows: 

  Base (wl,wr) = ( Moving (wl,wr) # Incv<(ul,ur)> ) ; Base(ul,ur)       

Moving(wl,wr) = Wheels(wl,wr) ;  Moving(wl,wr)     

Wheels (wl,wr) =  (Lwheelwl  |  Rwheelwr )  #  Delayt 

Where for convenience w=(wl,wr) is defined to be the 

rotational velocity command for the drive wheels. Moving 

sends the velocity information to two processes representing 

the wheels. Each wheel process translates rotational velocity to 

translational velocity subject to interference by slippage.  

     Lwheelw = ( Slipw<u> ; Outpl,w.u ) ; Lwheelw 

     Rwheelw = ( Slipw<u> ; Outpr,w.u ) ; Rwheelw    

The At state process is redefined to have the location p, the 

orientation , and wheel velocities of the base as inputs: 

   Atp,, (vl,vr)= ((Inpl<vl>| Inpr<vr>) # Delayta ) ; Atp+p1,+1,(vl,vr)    

where p1 = 0.5(vl+vr)rta


 and 1=(vl-vr)rta /d,  d is the 

distance between the wheels, and r is the wheel radius. 

Consider the following model of the slippage process 

(where Ran is the basic process mentioned in Section 5): 

Slip3w = ( RanR < i > ; ( LSTi,k<0> | GTEi,k<w> ) )    

                                                                         for constant kR  

This model represents a nonlinear stop/start or jerky slippage 

typical of real bases. Consider moving the system with a fixed 

rotational velocity v=(v,v) on each wheel with the objective of 

determining the spatial locus of endpoints in which the system 

can be, assuming this jerk/slip model.  The full system is now: 

          S3p,, (v,v) = ( Move(v,v) | Base(0,0) | At p, ,(0,0) )    

We start with S3p0,0,v which assumes that the base is initially at 

rest at position p0 and orientation 0. We can look at the 

fixpoints of each of the three processes separately. Considering 

each basic process as a state, we have 2 states in Move, 20 

states in Base, and 4 states in At. The shuffle product produces 

160 states, the vast majority of which do not represent useful 

interactions. We need only look at 26 states (16%) to generate 

the fixpoints: 

        Y(Move(vl,vr))  = Outcv,(vl,vr) ;Move(vl,vr) 

        Y(Base(vl,vr))  =  (Moving (vl,vr) # Incv<(ul,ur)>) ; Base(ul,ur) 

and 

          Y(Base(vl,vr))  =   

                  (Outpl, r.vl ; Lwheelr,vl | Outpr,r.vr  ; Rwheelr,vr )  ;  

                                           Moving (vl,vr) # Incv<(ul,ur)> ) ; 

                                                                              Base(ul,ur) 

           Y(At p,,(vl,vr) ) = ((Inpl<vl>| Inpr<vr>) # Delayta) ; 

                                                      At p+p1, +1,(vl,vr)    

The first two capture the transfer of the commanded velocity. 

The second two generate the motion of the base under slip with 

that velocity. We look at these further, assuming that the first 

velocity command v=(v,v) has been sent. Restricting our 

attention to the interaction of the Base and At processes: 

           ftr( Base(v,v) | At p,,(v,v))  State =  

                  pref { s | s = [Delayta . At p+p1, +1,(v,v) ] } 

                              for p1= 0.5(u1v+u2v)rta


  

                                                              1=(u1v-u2v) rta /d 

                                                              u1,u2  {0, 1} 



   

The values for u1 and u2 are generated randomly according to 

the Slip3 process. Using the results from the previous section, 

we can see that 

    tr(Base(v,v) | At p,,(v,v))  State =  

                pref { s | s = [Delayta . At p+pi, +i,(v,v) ]
i
 i1 } 

We can produce the spatial envelope of travel by taking the last 

At process in the longest traces. 

           SpEnv = last( tr(Base(v,v) | At p,,(v,v))  State) 

Figure 3 below shows results from a discrete Monte-Carlo  

simulation to generate SpEnv.  

 
Figure 3: Simulation of Slip Envelope 

Each point on Figure 3 is the position of one At in SpEnv. (The 

„clumps‟ are due to the discrete nature of the simulation). If the 

furthest distance traveled is of interest then a little geometry 

indicates it is not necessary to generate all of SpEnv - only the 

traces in which slip occurs in the initial At processes up to a 

slip resulting in one half a revolution of the base. Additionally, 

only one of slip on the left and the right wheel needs to be 

generated and the other can be obtained by symmetry. This 

subset of SpEnv is shown as the outer contour in Fig. 3. Note 

that one only needs to generate enough that  completes one 

full rotation. The contour in Fig.3 shows the distance for all 

initial slips up to the full length of the trace. 

IX. DISCUSSION 

This paper has addressed the difficult problem of 

obtaining performance guarantees for behavior-based robot 

system working in unstructured environments. The key issue in 

this problem is the difficulty of capturing the open-ended list of 

potential robot-environment interactions. We have presented a 

first step in solving the problem, an efficient way to model the 

asynchronous interactions of an environment and robot system, 

and we have demonstrated the application of the approach for 

wheel slippage in a mobile robot. 

 The examples in this paper used relatively simple 

environment and controller models as the objective was to 

demonstrate the efficiency of the proposed approach. 

Behavior-based methods work best in rich environments, in 

which there are many more active objects than just the robot 

base. The next step in this work is to apply our approach to this 

class of environment.  

 A second thrust of future research is to develop the 

automated form of the fixpoint and trace analysis used in this 

paper. A graph theoretic approach would appear to lend itself 

to this. Our ultimate objective is the construction of a software 

tool for MissionLab [13] and which allows the construction of 

robot controllers with specific performance guarantees.  
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