

Towards Performance Guarantees For

Emergent Behavior

 Damian M. Lyons
1
 Ronald C. Arkin

2

 1
Dept. of Computer & Information Science

2
College of Computing

 Fordham University Georgia Institute of Technology
 Bronx NY 10458 Atlanta GA 30332

 dlyons@fordham.edu

Abstract – It is important to be able to guarantee the safety

and effectiveness of robot behavior in applications where

robots must operate alongside people or in hazardous

situations. A modeling framework based on port automata

and asynchronous communication is introduced in this

paper. By looking at the internal transitions between port

communications, an analysis approach is developed that

removes the combinatoric issues of looking at an

asynchronous combination of robot and environment. An

example application of the approach to wheel slippage in a

mobile robot is presented.

I. INTRODUCTION

Robot systems are starting to play an important role in

military and in other government applications such as disaster

recovery, and search & rescue. They are also appearing in the

consumer area, e.g., Sony AIBO, Roomba, etc. The issue of

being able to guarantee the safety and effectiveness of robot

behavior is therefore coming increasingly to the forefront,

especially when robots must operate near people or in

hazardous situations. There is an analogy with the history of

civil engineering: bridges and other major structures were

constructed for thousands of years before the necessary

mathematical tools were developed to guarantee their

performance. In the 19
th

 and 20
th

 centuries, as such projects

became more ambitious, some spectacular failures ensued due

to the absence of effective performance guarantees.

Although formal modeling methods have found success in

many computer science applications [5], they have been less

prevalent in behavior-based robotics. The behavior-based

robot programming paradigm [1] has achieved wide popularity

and success in addressing the construction of robust robot

systems that can operate in unstructured environments.

However, the behavior-based approach uses assumptions quite

different from those used generally in designing software, and

this complicates the formal analysis of these systems. One key

assumption is the reliance on emergent behavior. The resulting

open-ended nature of the list of potential robot-environment

interactions is a serious issue for formal analysis.

In this paper, we introduce a model-checking approach to

the analysis of a behavior-based robot in an unstructured

environment, with the objective of determining performance

guarantees for the overall system. The principle research

contribution in this paper is the development of an efficient

approach to handle the open-endedness of dynamic robot-

environment interplay. The ultimate objective of the work is to

develop a software tool that can be used within Missionlab [13]

to build mobile robot controllers that operate in unstructured

and dynamic environments with formally guaranteed

performance.

II. EXISTING WORK

The AI community has developed a number of approaches

to reasoning about actions and their effects [16]. These

approaches focus strongly on the representation of the

behavioral schemas, and consider the robot to be the primary

generator of events. The role of the environment is simply to

respond. The situated automata approach [6] acknowledges the

role of environment – but the environment model is

represented using a modal logic of knowledge. The theoretical

limitations of this approach are still unclear, since it requires

automatically producing a „program‟ from a modal logic

description – a very difficult problem [3].

The landmark work by Ramadge & Wohnam [14]

introduced a formalism and methodology for using a finite-

state automaton (FSA) to control a discrete event plant –

discrete-event control (DEC). There have been a number of

extensions to this concept, including the addition of concurrent

models as well as addressing the problems of integrating

continuous and discrete control. There are also a number of

successful automaton-based methods for representing robot

programs. These include [9] as well as Georgia Tech‟s

MissionLab [13]. [7] integrates a process description

vocabulary with the FSA theory of Ramadge & Wonham. It

associates an FSA-semantics with the process operators of [10]

allowing an elegant integration with DEC results.

To model the emergent behavior of a behavior-based

system, it is necessary to have models of salient aspects of the

environment. It is reasonable to expect that most of the

processes at work in the robot‟s environment are current and

asynchronous with respect to the robot. However, FSA

semantics for concurrent processes has the fundamental issue

of combinatorial state explosion: combining FSAs into a single

FSA requires computing a Cartesian product of states, a

process whose complexity is exponential. This is a practical

limitation on its usefulness.

The Port Automata (PA) model [17] exploits message

passing between concurrent automata to simplify the analysis

of concurrency. Each process can be analyzed separately up to

a message passing event – avoiding the need to compute a

Cartesian product. We exploit this approach to combat the

computational complexity of our problem.

mailto:dlyons@fordham.edu

III. UNSTRUCTURED ENVIRONMENT

An unstructured environment contains a large number

of phenomena with which a behavior-based system can interact,

and the richness of the resulting emergent behavior is strongly

related to the richness of the environment. Thus, to make

performance guarantees about the behavior, we have to model

all the interactions between the environment and the robot.

Consider a very simple robot controller and a very simple

environment modeled by the two 3-state automata shown in

Figure 1. For example, the controller FSA might control wheel

velocity, and the environment FSA might model the interaction

of the wheel with the ground.

The Controller and Environment will share events

(the arrows in the diagram), and this specifies their potential

interactions [14, 12]. In the wheel and ground example, this

interaction would be the physical interface between wheel and

ground. It is reasonable to assume that the number of shared

events is much less than the total number of events. In the case

where there are no shared events, that is, Controller and

Environment are completely asynchronous, then the

combination of the two automata, the shuffle product

automaton, has 9 states. If one more 3-state automaton is added

to the environment model then there are 27 states, illustrating

the combinatorial nature of the shuffle product complexity.

Shared events reduce the total number of states; however, there

will be few shared events.

Figure 2: Controller & Environment Automata Models

This also illustrates that interaction complexity and emergent

behavior is a function of environment as well as robot, and

even a 3 DOF mobile robot will encounter substantial

complexity in a sufficiently rich and realistic environment.

IV. PORT AUTOMATA

A port automaton (PA) is a finite-state automaton

equipped with a set of synchronous communication ports. The

focus in this work will be restricted to deterministic PAs, since

[17] show that any non-deterministic PA can be built from a

network of deterministic PAs. Networks of deterministic

processes, e.g, Kahn networks, have appeared in robotics

before [18, 9, 13].

 Formally we can write a port automaton P as:

 P = (Q, L, X , , ) where (1)

 Q is the set of states

 L is the set of ports

 X = (Xi | i L) is the event set for each port

 Let XL= { (i, Xi) | i L } i.e., a disjoint union

  : Q XL 2
Q
 is the transition function

  = (i | i L) i : Q  Xi output map for port i

   2
Q

is the set of start states

For example, (q,(1,a))= {p}, 2(p)=b, states that in

state q, if there is an input a on port 1 then the automaton

transitions to state p, and writes b to port 2. All

communication involves a “swap” of values between the

sender and receiver. One or more of these values could be “#”,

the trivial or blank value, in which case the transfer of

information is in one direction; an input operation only or an

output operation only.

Let A(q) be the set of ports that are able to

communicate in state q (the active ports):

A(q) = { iL |  (i,x)  XL, (q,(i,x))   }

Note that this includes output as well as input activation.

Interaction is modeled explicitly via port

communication. For example, if the wheel and ground

example of Fig. 2 is modeled using port automata, there would

be a pair of channels over which the wheel and ground

automata communicate. The wheel controller automaton might

transmit wheel torque and surface contact information to the

ground model over one channel. The second channel could be

used for the ground to transmit back reaction data for sensors

modeled within the wheel controller. Note that the internal

processing of the ground automaton on receiving its input until

it produces a result value can be analyzed separately from the

processing in the wheel controller automaton.

Consider two port automata, P1 and P2 (Fig. 2). Let

some of the ports on P1 and P2 be connected as described by a

one-to-one mapping c. These connected ports are the only

channels over which the two automata can communicate. An

expression will be developed for the internal processing of P2

from when it first communicates on one of its connected ports

to when it communicates again.

Assume that each PA has a subset of its ports that are

self-connected. A write to one of these ports is the equivalent

of storing to an internal variable, which could be later retrieved

by a read from that port. Let S be the set of self-connected

ports, and let E be the set of ports available for external

connections, where L = E  S and E  S = . In that case,

the port map between P1 and P2 is c: E1E2.

Figure 2: Two connected Port Automata

Consider a single communication event from P1 to P2,

occurring in state q Q2 on the port i E2. The states reached

by a single transition from q may include some states in which

only self-connected ports are active, and some in which

external ports are active. The latter indicates that the automaton

 Port-to-port connection

 . .

 . .

 Self-connected ports Self-connected ports

P1 P2

 Controller Environment

is ready to communicate again. The former indicates that

internal processing is still in progress. Each additional

transition from such a state again brings the alternatives of

internal processing or a potential communication. This

reachability can be captured by an internal reachability

function)),(,(xiq


that maps the state and communication

pair to the set of states eventually reached after internal

communication, and in which the next external communication

event could occur.

Let I(q) and K(q) be defined as the sets:

I(q) = { qk | qk (q,(i,x)) & A(qk)  E =  }

K(q) = { qk | qk (q,(i,x)) & A(qk)  E   }

The internal reachability function is then:

)),(,(xiq


 = K(q)   


)()(

)),(,(
qIp EpAj

vjp
 

 (2)

where x Xi and v Xj.

A port connection automaton PC consists of two port

automata P1 and P2 with their ports connected by a one-to-one

mapping c and is written P1 |c P2. Whereas analysis of the

shuffle product of P1 and P2 involves generating and handling

Q1Q2, analysis of the port connection automaton involves

handling Q1 and Q2 separately using the internal reachability

function, until they communicate, after which they can be

handled separately again. A computation of P1 and P2 can be

modeled as a sequence of communication points, each

separated by an application of ̂ for P1 and for P2.

V. AUTOMATA NETWORKS

To specify networks of PA, we employ a notation of

processes and process composition operations similar to the

well-known CSP algebraic process model of [4, 15]. However,

unlike CSP, but like [7, 10], the notation can be seen as simply

a shortcut for specifying automata; A process is a port

automaton, and a process composition operator is a port

connection automaton.

Processes can take some initial parameter values to guide

their computation and may produce some values at the end of

their computation (if and when they terminate) that can be

passed on to other processes. By Pu<v> is meant a process P

that takes initial values u and produces results v. The semantics

of P is a port automaton P constructed by considering the

initial and result values to be conveyed over ports. A basic

process [4] is atomic, and corresponds to a port automaton

defined directly by transition function. These are processes

with simple and easily characterized behavior: e.g., Delayt is a

process that terminates t seconds after it has been started;

RanR<v> is a basic process that returns a random vector v

from a set R.. We also introduce Inc<x> and Outc,x as basic

processes to perform input and output, respectively, on port c.
 Processes are combined together using composition

operators. Inc1<x>;Outc2,x is process that inputs a value on

port c1 and then outputs it on port c2. This is a port connection

automaton of two automata, corresponding to the basic input

and output processes, in which the first automaton executes to

a termination state, at which point the second one starts. A port

communication needs to occur to let the second process know

when to start, and to transfer any values from the first to the

second process. The semicolon denotes sequential composition.

In concurrent composition, both automata execute at

the same time. For example (Outc2,x | Inc2<x>) is a port

connection of two automata, one that outputs a value on its port

c2 and one that inputs a value from its port c2; we establish the

convention that similarly named ports are connected to each

other. The vertical bar denotes concurrent composition.

To analyze a network of processes, it is necessary to

understand how that network changes as time progresses and

processes terminate and/or are created. This is the process-

level equivalent of the PA transition function, combined with

the axioms that define port-to-port communication. We adapt1

CSP notation and use the “” symbol to denote this process

transition function, e.g. P;Q  Q when P terminates, by the

definition of synchronous composition (similar to the evolves

operator of [10,11]). The following process expression follows

directly from the definition of PA port communication2:

 (Inc<v> ; Pv | Outc,v ; Q)  (Pv | Q)

This expression brings out the fact that the basic PA

communication paradigm is a variation on synchronous

communication. To analyze emergent behavior it is necessary

also to support asynchronous communication. We introduce a

process composition operation that allows us to explicitly

model the timing of asynchronous communication.

 A disabling composition of two processes is written

(P#Q) and denotes a port connection automaton of P and Q

connected so that whenever P terminates, it causes Q to

terminate, and vice-versa. The connection entails: transmitting

a message on a designated port on termination; rendering that

port active in every transition; and, the reception of the value

on that port taking the automaton to a termination state.

 We define asynchronous communication between

processes P and Q in a network T as follows:

P = (Inc<v> # Delayt1) ; Delayt2 ; P

Q = (Outc,v # Delayt3) ; Delayt4 ; Q

T = (P | Q)

P repeatedly offers to accept a message for some time t1 and

then does some internal processing represented by a delay of

time t2. Q similarly repeatedly offers to send a message for

time t3 and then does internal processing represented by t4. As

long as t1+t2t3+t4 then (P|Q) will repeatedly result in a

network of concurrent In and Out processes that will

communicate on c.

VI. ROBOT CONTROL NETWORK

A simple example of a random wander behavior

design pattern can be defined as:

 Wander = RanR<v> ; (Movev # Delayt) ; Wander

where Movev is defined as a process that causes the robot to

move with positive velocity v. Informally the behavior of

Wander is to select a random velocity, then cause the robot to

move in that direction for a fixed time t, and then repeat the

1 In CSP, an event follows the  operator.
2 The precedence order is: sequential, disabling, concurrent.

process forever. Consider how Wander behaves under the

process transition function:

 Wander = RanR<v> ; (Movev # Delayt) ; Wander

  (Movev # Delayt) ; Wander for some vR

  Wander after time t

A trace of a CSP process is the finite sequence tr(P)

= [a.b.c…] of events the process has engaged in up to some

moment in time. An event here is simply the termination of a

process, and the label for the event will simply be the name of

the process. The set of traces of Wander are of the form:

 tr(Wander) =

 pref { s | s = [(RanR<vi> . Delayt . Movevi)
i
], i1 }

where pref S extends the set S to be prefix-closed. We define

the set of traces associated with a transition operation,

tr(PQ), to be the smallest set of traces generated in

transitioning from P to Q. For example,

 tr(WanderWander) =

 pref { s | s = [RanR<v> . Delayt . Movev], v R }

This allows us to capture the “periodicity” in tr(Wander)

above: tr(Wander)= tr(WanderWander)
i
, i1.

These transition and trace definitions give a formal way to

calculate what was informally stated in the previous section.

However, if we want to establish performance guarantees, what

is missing here is a model of the environment in which

Wander operates.

VII. INTERACTION WITH ENVIRONMENT

Consider modeling the physical robot base as it moves

around: For now, the environment will consist solely of the

state of the base, including position and velocity. The actuator

model is specified by the processes Move and Base:

 Movev = Outcv,v ; Movev

This is a simple interface between the controller and the

physical robot base: a velocity command is written to a port cv.

The model of the physical robot base is defined by

 Basep,v = (Incv<u> # Movingp,v<q>) ; Baseq,u

The In process receives the velocity control input u and applies

it to the robot base starting at the position q when the input was

received. The base continues Moving until it receives the next

control input.

 Movingp,v<q> = (Atp # Delayt) ; Movingp+vt,v<p+vt>

The process Atp represents the current position of the base. In

this network, the base remains at a position p for some small

time t and then asynchronously and instantaneously transitions

to the position p+vt. Thus, the values of the position state

variable are restricted to lie on a grid, though the grid can be

made as fine as desired by making t as small as necessary.

Note that the same process terminology has been used to

describe the physical world as was used to describe the

controller.

We can now analyze how Wander behaves in this

environment (a model-checking analysis) by looking at the

concurrent composition S1:

 S1p,v = (Wander | Basep,v)

Recall: each process is a port automaton, and the

networks built using composition operators are port connection

automata. That means, for S1 we can employ the internal

transition function to analyze Base and Wander separately

until they communicate and thus avoiding, as mentioned, the

combinatorial issues associated with their shuffle. However,

the special control port we introduced for disabling

composition is active in every process on every transition. For

this reason, when applying the internal transition function, we

omit any special ports introduced for composition operators.

Instead, we will use the process transition operator and traces

to capture & analyze sequencing, and we retain the

computational advantage of using the internal transition

function to go from external communication to the next

external communication in each automaton. We can rephrase

the internal transition function in terms of the process

transition operator:

̂ (P) = { Q | P  Q=f(Q1,…,Qn),

 i 1,…,n, Qi=In  Qi=Out }

That is, we look for the first network that we can reach from P

via the process transition operator and which contains an input

or output operation. When P is analyzed separately from other

processes, then it can only transition from such a Q due to

disabling composition with a process like Delay that disables

the pending communication. If we use the asynchronous

communication pattern described in the previous section, (and

used in Base above) then the effect is that P repeatedly

transitions to a network Q that is ready for communication.

This periodic nature means that Q is a fixpoint of the process

transition operator, defined here as Q  ̂ (Q). We associate

a fixpoint with a process network as follows: Q is a fixpoint of

P, written Y(P)=Q, iff ̂ (P)=Q and Q  ̂ (Q). The trace

tr(Q Q) is the trace of the fixpoint, we define ftr(Q)= tr(Q

Q).

The fixpoints for each component of S1p0,0 (S1 with

start position p0 and start velocity 0) are obtained as follows:

 Y(Wander) = (Outcv,v ;Movev# Delayt) ; Wander

 for some v R

 Y(Basep0,0) = (Movingp,v<q> # Incv<v>) ; Baseq,v

and the behavior of S1 up to this first communication point is

captured by the set of traces T1=ftr(S1p0,0), and tr(S1p0,0) = T1
i,

i1. However, T1 contains information about all the processes

in the controller and the sensory and motor interface, as well as

the state of the environment. We need to restrict the trace

information to just the state of the robot and environment. In

this example, this is simply the position of the robot (the Atp

process), and the time (the Delayt process).

The restriction of a trace tr to a set S is written trS

and is defined as the transformation of tr by eliminating all

events relating to processes in a given set S, but preserving the

order of remaining events. Let us define State={At, Delay}:

T1  State = pref { s | s = [Delayt . Atp0

]}

There will eventually be a transfer of information across the

port cv, described by the transition:

 S1p0,0  (Wander | Basep0,v) = S1p0,v

The analysis of fixed points of each component can be repeated.

Y(Wander) remains the same, but

Y(Basep0,v) = (Movingp0,v<q> # Incv<v>) ; Baseq,v

and the trace of this fixpoint is

 ftr(S1p0,v)  State = pref { s | s = [Delayt . Atp0+vt

] }

and the traces of S1p0,v before the next communication are

 tr(S1p0,v)  State = pref { s |

 s=([Delayt . Atp0+ivt

])

i
 i1 }

where (Ai)
i
 is the sequence A0.A1.A2…Ai-1. There is an intuitive

ordering on the sets in ftr(S1p0,v)  State based on the length of

the trace, with the longer traces representing a greater

movement of the base from the start point. We will denote the

longest trace in a set of traces tr as tr.

 We can iteratively generate fixpoints for S1. Let us

denote these as F1, F2, …,Fn, where F1=Y(S1p0,0),

F2=Y(S1p0,v0), F3=Y(S1p0+iv0t,v1), etc. The traces for F1 become

prefixes for the traces in F2, which in turn are prefixes for

those in F3, etc. The last position for the largest trace of F2

(p0+iv0t) becomes the first position of every trace in F3, etc.

The final position of the base can be thus captured by the

concatenated trace of the maximum of each trace set:

 tr(F1). tr(F2). tr(F3).,…,. tr(Fn)

The function last(tr) returns the rightmost element of a trace.

 last(tr(F1)).last(tr(F2)).,…,. last(tr(Fn))

 = Atp0+n.v0.t . Atp1+n1.v1.t . .… . Atpm+nm.vm.t

This is the definition of a random walk, pn = pn-1 + nvn-1t . A

random walk on a 2D grid has a probability of unity of

eventually visiting every point on that lattice.

 Let us consider the computational effort in working

out the answer. If we map the basic processes in S1 to states,

then we arrive at 5 states in the controller Wander and 6 states

in the environment Base. This mapping of processes to states

may be off by a constant factor, but it suffices to show the

reduction in computational complexity. The shuffle product

analysis approach involves generating and exploring 30 states

therefore, most of which involve no interaction between

controller and environment. Our analysis involved checking

only the 5 states in Wander and then the 6 in Base. However,

we had to treat Base twice: once for the initial conditions

(before any communications), and once after the first

communication has happened. This gives us a total of 17 states

explored, and improvement of 43%. The initial conditions just

verify that no motion occurs before the first velocity command.

By restricting our attention to the first communication events,

we could gain an improvement of 63%.

VIII. TERRAIN FACTORS

A very common problem with wheeled bases, outdoors or

indoors, is slippage between the wheel and the terrain [2]. A

process network that allows modeling of a number of different

slippage conditions for a base with two drive wheels will now

be introduced.

The Base process is redefined as follows:

 Base (wl,wr) = (Moving (wl,wr) # Incv<(ul,ur)>) ; Base(ul,ur)

Moving(wl,wr) = Wheels(wl,wr) ; Moving(wl,wr)

Wheels (wl,wr) = (Lwheelwl | Rwheelwr) # Delayt

Where for convenience w=(wl,wr) is defined to be the

rotational velocity command for the drive wheels. Moving

sends the velocity information to two processes representing

the wheels. Each wheel process translates rotational velocity to

translational velocity subject to interference by slippage.

 Lwheelw = (Slipw<u> ; Outpl,w.u) ; Lwheelw

 Rwheelw = (Slipw<u> ; Outpr,w.u) ; Rwheelw

The At state process is redefined to have the location p, the

orientation , and wheel velocities of the base as inputs:

 Atp,, (vl,vr)= ((Inpl<vl>| Inpr<vr>) # Delayta) ; Atp+p1,+1,(vl,vr)

where p1 = 0.5(vl+vr)rta


 and 1=(vl-vr)rta /d, d is the

distance between the wheels, and r is the wheel radius.

Consider the following model of the slippage process

(where Ran is the basic process mentioned in Section 5):

Slip3w = (RanR < i > ; (LSTi,k<0> | GTEi,k<w>))

 for constant kR

This model represents a nonlinear stop/start or jerky slippage

typical of real bases. Consider moving the system with a fixed

rotational velocity v=(v,v) on each wheel with the objective of

determining the spatial locus of endpoints in which the system

can be, assuming this jerk/slip model. The full system is now:

 S3p,, (v,v) = (Move(v,v) | Base(0,0) | At p, ,(0,0))

We start with S3p0,0,v which assumes that the base is initially at

rest at position p0 and orientation 0. We can look at the

fixpoints of each of the three processes separately. Considering

each basic process as a state, we have 2 states in Move, 20

states in Base, and 4 states in At. The shuffle product produces

160 states, the vast majority of which do not represent useful

interactions. We need only look at 26 states (16%) to generate

the fixpoints:

 Y(Move(vl,vr)) = Outcv,(vl,vr) ;Move(vl,vr)

 Y(Base(vl,vr)) = (Moving (vl,vr) # Incv<(ul,ur)>) ; Base(ul,ur)

and

 Y(Base(vl,vr)) =

 (Outpl, r.vl ; Lwheelr,vl | Outpr,r.vr ; Rwheelr,vr) ;

 Moving (vl,vr) # Incv<(ul,ur)>) ;

 Base(ul,ur)

 Y(At p,,(vl,vr)) = ((Inpl<vl>| Inpr<vr>) # Delayta) ;

 At p+p1, +1,(vl,vr)

The first two capture the transfer of the commanded velocity.

The second two generate the motion of the base under slip with

that velocity. We look at these further, assuming that the first

velocity command v=(v,v) has been sent. Restricting our

attention to the interaction of the Base and At processes:

 ftr(Base(v,v) | At p,,(v,v))  State =

 pref { s | s = [Delayta . At p+p1, +1,(v,v)] }

 for p1= 0.5(u1v+u2v)rta


 1=(u1v-u2v) rta /d

 u1,u2  {0, 1}

The values for u1 and u2 are generated randomly according to

the Slip3 process. Using the results from the previous section,

we can see that

 tr(Base(v,v) | At p,,(v,v))  State =

 pref { s | s = [Delayta . At p+pi, +i,(v,v)]
i
 i1 }

We can produce the spatial envelope of travel by taking the last

At process in the longest traces.

 SpEnv = last(tr(Base(v,v) | At p,,(v,v))  State)

Figure 3 below shows results from a discrete Monte-Carlo

simulation to generate SpEnv.

Figure 3: Simulation of Slip Envelope

Each point on Figure 3 is the position of one At in SpEnv. (The

„clumps‟ are due to the discrete nature of the simulation). If the

furthest distance traveled is of interest then a little geometry

indicates it is not necessary to generate all of SpEnv - only the

traces in which slip occurs in the initial At processes up to a

slip resulting in one half a revolution of the base. Additionally,

only one of slip on the left and the right wheel needs to be

generated and the other can be obtained by symmetry. This

subset of SpEnv is shown as the outer contour in Fig. 3. Note

that one only needs to generate enough that  completes one

full rotation. The contour in Fig.3 shows the distance for all

initial slips up to the full length of the trace.

IX. DISCUSSION

This paper has addressed the difficult problem of

obtaining performance guarantees for behavior-based robot

system working in unstructured environments. The key issue in

this problem is the difficulty of capturing the open-ended list of

potential robot-environment interactions. We have presented a

first step in solving the problem, an efficient way to model the

asynchronous interactions of an environment and robot system,

and we have demonstrated the application of the approach for

wheel slippage in a mobile robot.

 The examples in this paper used relatively simple

environment and controller models as the objective was to

demonstrate the efficiency of the proposed approach.

Behavior-based methods work best in rich environments, in

which there are many more active objects than just the robot

base. The next step in this work is to apply our approach to this

class of environment.

 A second thrust of future research is to develop the

automated form of the fixpoint and trace analysis used in this

paper. A graph theoretic approach would appear to lend itself

to this. Our ultimate objective is the construction of a software

tool for MissionLab [13] and which allows the construction of

robot controllers with specific performance guarantees.

REFERENCES

1. R. C. Arkin, Behavior-Based Robotics, MIT Press,

Cambridge, MA, 1998.

2. Borenstein J., Wehe, D., Internal Correction of Odometry

Errors with the Omnimate. In: proc. 7
th

 Topical Meeting on

Robotics & Remote Sys, April 1997, pp.323-329.

3. Emerson, E. A. (1990). Temporal and modal logic. In van

Leeuwen, J., editor, Handbook of Theoretical Computer

Science, pages 996-1072. Elsevier Science Publishers B.V.:

Amsterdam, The Netherlands.

4. Communicating Sequential Processes, C.A.R. Hoare.

Prentice Hall International Series in Computer Science, 1985.

 5. High-Integrity System Specification and Design, M.G.

Hinchey and J.P. Bowen. Springer-Verlag, London, 1999.

6. L. P. Kaelbling, A Situated-Automata Approach to the

Design of Embedded Agents. SIGART Bull. 2(4): 85-88 1991.

7. Kosecka, J. (1996). A Framework for Modeling and

Verifying Visually Guided Agents, Analysis and Experiments,

Ph. D. dissertation, Dept of Computer and Information Science,

Univ of Pennsylvania.

8. J. Koseka, H. Christensen, and R. Bajcsy, Discrete event

modeling of visually guided behaviors, Int. Journal of

Computer Vision, vol. 14, no. 2, pp. 179--191, March 1995.

9. Lyons D. M., and Arbib, M. A. A Formal Model of

Computation for Sensory-Based Robotics IEEE Trans. Rob.

Aut., vol. 5, no. 3 (June 1989), pp.280-293.

10. D. M. Lyons. Representing and analyzing action plans as

networks of concurrent processes. IEEE Transactions on

Robotics and Automation, V9 N3 June 1993 pp.241-256.

11. D. Lyons and A. Hendriks, Exploiting patterns of

interaction to achieve reactive behavior, Artificial Intelligence

73, pp.117--148, 1995.

12. D. Lyons, Discrete-Event Modeling of Misrecognition for

PTZ Tracking. IEEE Int. Conf. Advanced Video & Signal-

based Surveillance, Miami FL 2003.

13. MacKenzie, D., Arkin, R.C., and Cameron, R., Multiagent

Mission Specification and Execution, Autonomous Robots, Vol.

4, No. 1, Jan. 1997, pp. 29-52.

14. R. J. Ramadge and W. M. Wonham, 1987. Supervisory

control of a class of discrete event processes. SIAM J. Control

and Optimization, 25(1), pp. 206-230.

15. Concurrent and Real-time Systems: The CSP Approach, S.

Schneider. Wiley, 1999.

16. Shapiro, Stuart C. (ed), "Encyclopedia of Artificial

Intelligence", 2nd Ed., John Wiley & Sons, New York, 1992..

17. Martha Steenstrup, Michael A. Arbib, Ernest G. Manes,

Port Automata and the Algebra of Concurrent Processes. JCSS

27(1): 29-50 (1983).

18. D. B. Stewart, R. A. Volpe, and P. K. Khosla, “Design of

dynamically reconfigurable real-time software using port-

based objects,” IEEE Trans. on Soft. Eng., vol.23, no.12, Dec.

1997.

