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DISCRETE-EVENT MODELING OF MISRECOGNITION IN PTZ TRACKING 

 
 

Abstract 
 
This paper introduces an approach to the problem of choosing when to zoom a moving camera so 
as to follow a designated video surveillance target. Rather than just trying to maintain a simple 
viewing constraint (e.g., target > 10% of image), the potential misrecognition of the target is also 
used to decide when to zoom. A discrete-event approach is used to develop two models of 
appearance change as well as a model that represents the viewing constraints for target 
surveillance. Disagreement between the appearance models represents a potential loss of target. 
Supervisory discrete event control theory is used to automatically construct a controller that 
selects zoom actions to prevent loss of target. The implementation of this controller is overviewed 
and results presented. 
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ABSTRACT 
 
This paper introduces an approach to the problem of 
choosing when to zoom a moving camera so as to follow a 
designated video surveillance target. Rather than trying to 
maintain a simple viewing constraint (e.g., target > 10% 
of image), the potential misrecognition of the target is also 
used to decide when to zoom. A discrete-event approach 
is used to develop two models of appearance change as 
well as a model that represents the viewing constraints for 
target surveillance. Disagreement between the appearance 
models is taken to indicate a potential loss of target. 
Supervisory discrete event control theory is used to 
automatically construct a controller that selects zoom 
actions to prevent loss of target. The implementation of 
this controller is overviewed and results presented. 
 
 

1 INTRODUCTION 
This paper introduces a new method to address the 
problem of choosing when and how much to zoom a PTZ 
camera so as to follow a designated target.  Typically the 
PTZ control problem is specified as the control necessary 
to keep the target within certain PTZ bounds so that a 
security operator can easily observe the individual. For 
example, the automated tracking controller may be 
constrained to keep the target centered and sized to fit into 
a bounding box in the center of a display monitor. This 
establishes conflict between the need of the controller to 
uniquely recognize and �lock� onto the target and these 
PTZ bounds. This conflict is usually resolved in favor of 
the observer by performing recognition first on each frame 
followed by a PTZ motion to bring the target into viewing 
bounds.  This sacrifices tracking reliability for good 
observability; the security guard may get a good view of 
the wrong target! 
 
The paper presents two useful results. The first is the 
discrete-event modeling of both target recognition and 
target viewing constraints. The second is the automatic 

derivation of an optimal supervisory PTZ controller 
description from these models.  
 

2 EXISTING WORK 
The literature contains a number of approaches to the 
problem of tracking a single human surveillance target in 
a sequence of video images[1]. Pfinder [2]  tracks a single 
person in a stationary camera  (or stereo camera pair) 
using a multi-class statistical model of color and shape to 
segment the target from its background. W4 [3] tracks 
people in stationary monochromatic video using 
background subtraction for segmentation and making use 
of a cardboard shape model [4] that represents the relative 
position and sizes of body parts. The Nine-grid [5] 
algorithm employs line-scan measurements to label body 
features using a 2D model. Backpack [6] builds on [4] to 
determine whether a target is carrying anything. Some 
authors have addressed the issue of tracking the individual 
parts of the body of the human target [7, 8] using 
techniques usually applied to multiple target tracking [9]. 
Others have used flexible 2D contours to model the target 
shape [10]. In each case, since the data comes from one or 
more stationary cameras, the primary use of target model 
is to interpret the image data.  
 
However, in the case of a PTZ camera [11], the model 
information can be used to attempt to improve the future 
tracking performance. For example, the camera can be 
moved so that the target is centered and zoomed and not 
clipped or too small. In general, the PTZ commands are 
generated purely to improve such a �viewing� constraint 
[12]. This constraint is really a specification of the desired 
output of the tracking system to an observer, e.g., a 
security guard. There is no guarantee that such a viewing 
constraint represents whether the tracking system can 
recognize the target.  The objective of this paper is to 
develop an approach to modeling the target so that PTZ 
commands can be issued that improve tracking 
performance as well as deliver the required output to an 
observer. 
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Figure 2: Shape Estimation 

 
This paper presents two state-based models of how the 
appearance of a human surveillance target can change 
over time, one based on shape and one based on color. 
The state of each model can be generated by looking at 
some measurements of the target in the current image 
while tracking. Disagreement between these models about 
what state the target is in is considered a potential loss of 
target. Operator viewing constraints are also represented 
with a state-based model. The discrete-event theory of 
Ramadge & Wohnam [13] is then used to construct a 
supervisory PTZ controller that obeys both the viewing 
and recognition constraints.  

3 SUPERVISORY DISCRETE EVENT CONTROL 
In a number of papers since 1982, Ramadge & Wonham 
(RW) [13, 14] and their students have developed a 
mathematical theory of control for discrete-event system 
(DES). This theory is based on the common concept of an 
automaton. RW introduce the concept of a controllable 
event; that is, an event that can be prevented from 
occurring. They add a mapping γ to the automaton 
description to represent such a controllable automaton. 
This mapping indicates for each state whether each 
controllable event is enabled or not. 
 
The discrete event control problem they set themselves is 
called Supervisory Control: Can the controllable events be 
manipulated so that the events generated by a discrete 
event plant model stays within some defined specification, 
a subset of all possible events. The specification they use 
is the set of regular languages over the alphabet of the 
plant. Any such language can be implemented as an 
automaton [15].  
 
There exists a least restrictive, non-blocking supervisory 
controller for a plant and specification provided they obey 
some basic constraints. These constraints are that the 
specification language is controllable and prefix closed 
with respect to the plant. If these hold, RW show that the 
controller CT for specification S and plant P is given by 
                  L (CT) =  sup C (  L(S) ∩ L(P)  )                    � 
Where L(A) is the language generated by A, C (K) is the 
class of languages K, and sup is the supremal element of 
the class. RW provide an algorithm for generating CT.  
 
Since both plant and specification are constructed as 
controllable automata, RW also provide a useful set of 
construction operators to build more complex automata 
from simpler ones, including the following: 
• The synchronous product of two automata, A||B, is 

simply the shuffle product if their alphabets are 
disjoint. If they share any events in common, then 
A||B synchronizes on these events. 

• The projection operation on an automaton, which we 
write here as A/Σ, is the automaton resulting from A 
if the events in Σ are not observable. 

Supervisory control is typically about control by disabling 
events, rather than by generating them. To control a PTZ 
camera, it is necessary to generate control events. RW 
have also developed an approach to control problems 
requiring the generation (or �forcing�) of events. They 
refer to this as timely preemption.  
 
The TCT [16] software tool allows a designer to create 
automata descriptions and apply the various operators in 
the formalism including the automatic generation of 
supervisory control automata. 

4 RECOGNITION AND VIEW MODELS 
The target model represents the target as seen by the PTZ 
camera. The target model will consist of two cue models � 
one will capture the way the target shape changes as the 
target moves, and the second will capture the way the 
target color changes as the target moves.  

 
The camera is assumed to be in an overhead location. 
Thus, the camera will view the target either from the front, 

the side, the back, or the top (Figure 1). The target can 
transition from one orientation to another by turning 
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Figure 1: Target Model State Graph 
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and/or by walking towards or away from the camera. Both 
the shape and color cue models are based on this general, 
four-state target model. 
 
The Shape Cue Model. The foreground region in the 
image is identified by motion differencing. The PTZ 
camera is held stationary while this is done. A bounding 
box is inscribed around the foreground region.  Depending 
on which state the target is in, it will present a different 
silhouette shape to the camera view. The state is estimated 
by measuring the dimensions of the bounding box as 
shown in Figure 2.  The outer bounding box shown is the 
bounding box of the full foreground motion area. The 
inner bounding box covers the top half of the area only (to 
avoid walking legs). The aspect ratio of width (w) of the 
inner box to the height (h) of the outer box is used to 
estimate whether the target is facing the camera front, side 
or from the top. Since back and front have the same aspect 
ratio in general, the four-state model of Figure 1 collapses 
into the three state model of Figure 3. The aspect ratio 
conditions for each state were established empirically. 
The three shape states are labeled SFront, STop and 
SSide. The target transitions between these states by 
moving. These motions are modeled by a set of events 
linking the three states in a completely connected state 
graph. Notice that none of these events are controllable. 
Figure 3 can be represented by the following automaton:  

CMshape  = ( Σc, Σu, Q, δ, q0, Qm ),    where                                
Σc = ∅  
Σu = {t1, mt, ma} 
Q = {SFront, STop, SSide}                                                                   
δ = Q×Q  
q0 = Front 
Qm = Q.                                                      �      

 
The Color Model. The color cue  model describes how the 
set of color regions identified with the target change. It 
will be assumed that the principal cause of change in the 
target color is the pose of the target with respect to the 
camera. It will also be assumed that there is a target 
identification phase prior to tracking: that is, a phase in 
which the system can take a set of characteristic color 
measurements of the target. These color measurements are 
made as follows. The target is divided spatially into a 
series of regions as shown in figure 4. In the 
implementation used in this paper, the operator uses the 
mouse to draw a bounding box over the intended target. 
The bounding box is then divided up automatically into 
four regions covering the hair, face, torso and legs of the 
target. The relative size of these regions comes from 
biometric average measurements [17]. It is assumed that 
the characteristic color in each region can be 
approximated by a normal distribution N (µ,σ). The RGB 
color pixels in each region are normalized to RGY and the 
following means and standard deviations calculated: 

             Nfi ( µ , σ ) for f∈ {Hair, Face, Torso, Legs}  
                                   i∈ {R,G,Y}                                      � 

An example of the mean RGY color for each target region 
is shown on the left in Fig. 4.  
 
During tracking, these color statistics are compared 
against the colors in the foreground bounding box. 

Because the motion region extraction produces a bounding  
box that does not always correspond well with the 
silhouette of the target, the following procedure is used to 
identify which parts of the foreground bounding box to 
test for which target region color.  
 
When a target moves, part of the background is 
uncovered, which then becomes part of the foreground 
region extracted. To compensate for this, the direction of 
motion of the target is calculated in successive frames. A 
strip of length h and width w/3 is taken down the center of 
the bounding box. This strip is offset either to the left or 
right by w/6 depending on the direction of motion. The 
strip is divided into three portions vertically: Head and 
Face colors are matched in the upper region; Torso color 
in the middle region; and Leg color in the lower region. 

 
Figure 4: Spatial Color Regions 
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Figure 3: Shape Model 
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Figure 5: Color Matching 

Samples are taken from each region classified to see if 
they lie within σfi as follows: 
 
         1 if (x-µfi)2  <  σfi

2                                           
Cfi(x) =      
                      0 else                                                         � 

          )(1)( rA
t
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i rx

fi >��
∈

                               � 

where f∈ {Hair, Face, Torso, Legs}  i∈ {R,G,Y}, r∈ {upper, 
middle, lower}, and A(r) is the area of portion of the strip, 
and t is a confidence threshold. 

 
Depending on the target state, a different selection of the 
four color regions will be seen at any time. In the top 
view, the Hair and Torso colors dominate. In the front and 
side views, all four color regions can be seen. In the back 
view, the Face cannot be seen.  
 
This generates the color cue model shown in Figure 6. 
Note that again this is a three state model, but this time the 
Front and Side target states collapse into CFront. The 
target can transition between these states by moving and 
turning, and these are represented by the transitions that 
link the three states in the completely connected graph 
shown. Although the move events are the same in both 
cue models, the turn events are different, due to the 
different mappings of the cue model states to the target 

model states. An automata description of CMcolor can be 
constructed in the same manner as for CMshape. 
 
The two cue models share some events: This expresses a 
coupling between the models. For example, if both cue 
models are used in the plant model, then it should not be 
possible to be in both the STop and CFront states. To 
construct a plant model from both of these cue models, 
they are combined using RW�s sync operator, which 
ensures that the models coordinate on events: 
 

CM = CMshape || CMcolor                                     � 
and define 

Qur = Qshape× Qcolor - Qcm                                    � 
which is the set of �illegal� state combinations such as 
(STop,CFront). 
 
Recognition model. The target model represents the �real� 
motions and state of the target. However, the observation 
of the target with a camera may prevent the �real� state of 
the target from being measured. A key problem in 
observing the shape and color information used in the 
target model is the image resolution: the target may be too 
small or partially out of view. The solution is to devote 
more image pixels to the target; that is to center and zoom 
into the target. We will assume that re-attaining the target 

area observed in the target identification phase is the best 
zoom choice to identify the target. 
 

To formalize the recognition model we introduce two 
image interpretation functions. Let I be the set of all 

REC        NREC 
     r       ur                   ur 
           
            r                  z 
               
         S0 

Figure 7: RM with forced zooming 
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Figure 6: Color Cue Model 
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images. The shape interpretation function Rshape maps an 
image i∈  I onto a state q∈  Qshape and Rcolor maps an image 
to a state q∈  Qcolor. The multi-cue recognition function R 
is defined as: 
  R: I → Qshape× Qcolor   s.t.  R(i) = ( Rshape(i), Rcolor(i) )   � 
We will define two events based on this recognition 
function. 
    Event ur   occurs if R(i) ∈  Qur                              � 
    Event r  occurs if R(i) ∈  Qcm 
 
Intuitively, the event ur happens if the recognition 
function reports a state that is �illegal� with respect to the 
cue models, and r if the state is legal. The state 
representation for the recognition is relatively simple, as 
shown in Figure 7.   
  
The model�s REC and NREC states represent a consistent 
(with the cue models) and inconsistent interpretation of 

the target respectively. When an inconsistent 
interpretation of the target is obtained (the event ur) the 
only way to recover is to attempt to devote more image 
pixels to the target by recentering and rezooming. Let Am 
be the area of the bounding box of the target in the image 
when the color model was originally gathered. Let zm be 
the zoom setting necessary to drive the area of the 
bounding box from its current value to Am in the next 
image, if this is possible, otherwise it is the maximum 
zoom setting. The zoom event should produce at least zm. 
This zooming is the event z shown in Figure 7. A 
controller can choose to issue a recenter and zoom event 
whenever it pleases. RW implement these forced events 
such as these using event preemption. The recognition 
model including RW preemption is show in Figure 8 
below.  
 
A new event ur� is defined. This has the same definition 
as ur but it is classified as a controllable event. The 
intermediate states NREC1 and NREC2 are also 
introduced. Disabling the controllable event ur� will be 
considered the same as requesting that the forced event z 
should occur.  
 

The state and transition structure shown for the 
recognition model RM in Figure 8 is a good general 
template for a controllable degree of freedom of the 
camera. Therefore we will define an automaton template 
DOF(a,b,c) as follows: 
                           RM  =  DOF( r, ur, z )                  � 
This means that replacing the generic events a, b and c in 
the automaton template with the events r, ur, and z then 
we get the automaton RM shown in Figure 8. The state 
names are irrelevant for our purposes and they can simply 
be referred to as numbers.  
 
View model. Whereas RM represents recognition 
constraints on the tracking process, the view model will 
represent the �output� constraints on the tracking process 
� the constraints about what constitutes a good image for 
an observer such as a security guard. We will impose two 
straightforward constraint: In each image i, the bounding 
box area of the target BA(i), and the location of the target 
in the image PT(i), should always be bounded as follows:  

            A1 < BA(i) < A2                                � 
           | C � PT(i) | < N                                     � 

where A1 and A2 are size bounds (e.g., 25% of the total 
image), where C is the image coordinates of the center of 
the image, and N is a positive constant less than or equal 
to half the smallest dimension of the image. The view 
model requires a rezoom action when BA(i) is too small or  
too big, and a recenter only when  PT(i) becomes too far 
from the center of the image.  
 
We will introduce an event oz, to happen when (11) does 
not hold on the image, and an event ov when (12) does not 
hold. The event ok happens only when (11) & (12) hold. 
These are uncontrollable events. For preemption 
purposes, the events oz� and ov� will also be introduced, 
with the same definition, but classified as controllable. 
Disabling the first will be understood to mean specifying a 
forced rezoom and recenter event rz,  the second, a forced 
recenter event rc (with no zooming).  
 
 Using (10) we can now define the view model as a 
synchronous product of two automata generated from the 
DOF template as follows: 
        VM   =      DOF( ok, ov, rc ) ||  DOF( ok, oz, rz ) 
 
Plant Model. The Plant model can now be defined as the 
synchronous product of the Cue Model, the Recognition 
Model and the View Model:    
                  PLANT =  CM || RM || VM                            � 
Since no events are common between the models, this is 
simply the shuffle product of the three automata and has 
Qcm × Qrm × Qvm states. We can simplify this a little. First, 
note that the physical actions of the target in CM (i.e., t1, 
mt, etc.) are not directly observable; their effect can only 

  
                 r         NREC1              ur 
       r                     ur         ur� 
                 NREC 
S0 REC              z                              
    r     
             NREC2          
            

Figure 8: RM with preemption 
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be seen via RM. Thus, we can project Σcm, the modeled 
physical motions of the target, out. Secondly, the forced 
control events Σfc = {z, rc, rv} used in the RM and VM 
models are only controllable via their respective 
preemption events: ur�, oz�, ov�. Thus, these can also be 
projected out to simplify the model. 
        PLANT = ( CM || RM || VM ) / Σcm ∪  Σfc                 � 

5 CONTROLLER SYNTHESIS 
The supremal controllable sublanguage (SCS) approach 
will be used to automatically design a controller for the 
plant (14). The first step is to specify the desired behavior 
of the controlled plant as a regular language over the event 
set of the plant. Informally, the desired behavior is that the 
automatic tracker maintains the target in a recognized 
state and maintains the target in view. In event terms, this 
means the controlled event language should contain 
strings of the event r of any length. However, if ur appears 
in any string, it should be immediately followed by r.  The 
automaton, RC is a generator for this language: 
                   RC = DOFSPEC( r, ur )                               � 

 
With respect to the viewing constraints: The language 
should include strings of ok events of any length. If an oz 
or ov happens, then they should be immediately followed 
by an ok event. Finally, any synchronous combination of 
these strings is also a valid string in the language.  
    VC = DOFSPEC( ok, ov ) || DOFSPEC( ok, oz )        �            

The shuffle product of these automata will allow any 
shuffle of the strings, as desired, giving us the final 
control criterion: 
                           SPEC =  RC || VC                                 � 
The SCS approach can now be used to automatically 
generate a non-blocking, minimally restrictive controller 
that controls PLANT to ensure only the language 
generated by SPEC is generated: 
L(CONTROL) =     sup C  ( L(SPEC) ∩ L(Plant) )         � 
The TCT development environment [16] was used to 
evaluate (17) above, to ensure that (16) is controllable and 
prefix closed, and to produce the control enablement 
mapping γ. This resulting controller had 15 states and 47 
transitions. The control disablement mapping, γ, 
associated with CONTROL was generated as follows (the 
prefixed numbers are the state names) 
3: γ(ur�) =1        5: γ(oz�) =1                                             � 
6: γ(ov�) =1        7: γ(ur�) =1 
8: γ(oz�) =1        9: γ(ov�) =1  
10: γ(oz�) =1   γ(ov�) =1     11: γ(ur�) =1    γ(oz�) =1   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12: γ(ur�) =1   γ(ov�) =1     13: γ(oz�) =1    γ(ov�) =1  
14: γ(ur�) =1   γ(oz�) =1    γ(ov�) =1  
Notice that in states 14 and 11, the controller will attempt 
to reset zoom for the recognition model and also the 
viewing model. To resolve this conflict, we add the 
constraint that Am ≤ A2.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                   (a)                                              (b)                                             (c)            

Figure 9: Misrecognition Examples 



 

 7  

6 RESULTS 

In the implementation used in this paper, image 
differencing is used to locate the foreground region. The 
area and location of the foreground bounding box is 
calculated as are the recognition measurements as 
described in the shape and color cue model sections. 
Based on these measurements, the input events to the 
CONTROL automaton are generated. The output from the 
automaton is a command to recenter, a command to 
recenter and rezoom to the viewing constraints, or a 
command to rezoom to the original target area Am or some 
combination of these.  
 

Each of these commands resulted in a signal that moved 
the pan, tilt and zoom motors a portion of the distance 
towards their goal, unless the camera was already within a 
threshold distance of this. This simplification weakened 
the specification in (15); allowing multiple misrecognition 
events in a row, but eliminated the need for extensive 
camera calibration.  
 
Zoom commands were filtered by requiring that two 
successive zoom commands agree on the zoom value, and 
inhibiting further zoom for a short period after a zoom. 
This was necessary to handle the temporal noise in the 
foreground extraction. 
 
Figure 9 shows three examples of disagreement between 
shape and color models during tracking. Note in 9(c) that 
the color information does not place the color model into 
any of its states. A fourth color cue model state was 
added, CUnk, to capture this case. 
 

Figure 10 shows an example of a misrecognition (a) 
followed by a zoom resulting in recognition of the target 
(c). The middle frame (b) shows an example of temporal 
noise being filtered. 

7 DISCUSSION 
This paper has presented an approach to the design of an 
automatic tracking controller for deciding when to zoom, 
so as to keep a target under video surveillance using a 
PTZ camera. A problem was identified with the current 
approach to PTZ tracking: namely, that control of the 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
camera is directed by operator viewing constraints, and 
only indirectly on improving the tracking performance. 
This paper has concentrated therefore on developing a 
model of potential misrecognition of the target from the 
image data, and using this model to decide when to zoom. 
The approach is based on formalizing models of the target 
to represent the recognition and viewing criteria necessary 
to conduct tracking. Supervisory discrete event control 
theory is used to automatically construct an optimal 
controller that controls the camera both to improve 
tracking performance and to improve the operator viewing 
conditions. The implementation of this controller was 
overviewed and some results were presented of the 
controller operating as described. 
 
There are two areas of future work. The first is in relaxing 
the assumption that the principal cause of color change is 
the pose of the target; Occlusion is also a major cause of 
color change. Indeed it affects both of the cue models 
used, but can most easily be represented by the color cue 
model. Since occlusion can result in model disagreement 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
                  (a)                                  (b)                                       (c) 

Figure 10: Misrecognition followed by Zoom 
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and an inappropriate choice of zoom, it would be 
advantageous to include it in the model. Occlusion causes 
additional legal subsets of the color regions in the 
template to become valid. For example, allowing the legs 
to be occluded generates additional states in the cue 
model. 
 
The second area is in the selection of zoom actions. A 
very simple and inflexible approach was used in this 
initial work � zooming in or out to re-attain the original 
target size in the image. Ultimately, a more flexible 
approach calls for a hybrid control solution. 
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