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Abstract

The importance of solving the problem of integrating deliberative (“planning”) capabilities and reactive capabilities
when building robust, ‘real-world’ robot systems is becoming widely accepted (Bresina and Drummond, 1990; Fraichard
and Laugier, 1991; McDermott, 1991). This paper presents a solution to this problem: cast planning as the incremental
adaptation of a reactive system to suit changes in goals or the environment. Our application domain is a manufacturing
problem — robotic kitting. This paper represents an advance on existing work in two ways: It presents and formally examines
an architecture that incorporates the benefits of a deliberative component without compromising the reactive component.
Secondly, it provides the first set of performance statistics in the literature for this class of system. In our approach, the
reactive system (the reactor) is a real-time system that continually interacts with the environment, and the planner is a
separate and concurrent system that incrementally ‘tunes’ the behavior of the reactor to ensure that goals are achieved. We
call this the planner-reactor approach. The reactor is described using a formal framework for representing flexible robot
plans, the RS model (Lyons, 1990; Lyons and Arbib, 1989). Thus, the behavior of the reactor, and the rules by which the
reactor can be modified, become open to mathematical analysis. We employ this to determine the constraints the planner
must abide by to make safe adaptations and to ensure that incremental adaptations converge to a desired reactor. We discuss
our current implementation of planner and reactor, work through an example from the kitting robot application, and present
implementation results.

Keywords: Planning; Reacting; Adaptation; Robots; Robot planning; RS; Integrating planning and reaction

1. Introduction

The importance of integrating deliberative (“planning”) capabilities and reactive capabilities when building
robust, ‘real-world’ robot systems is becoming widely accepted [4,12,22]. The problem with this integration
is that much of the power and robustness of a reactive system comes from its lack of deliberation [6]. This
paper presents a solution to this problem: cast planning as the incremental adaptation of a reactive system
to suit changes in goals or the environment. Our application domain is a manufacturing problem - robotic
kitting. This research represents an advance on existing work in two ways: It presents and formally examines
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an architecture that incorporates the benefits of a deliberative component without compromising the reactive
component. Secondly, it provides the first set of performance statistics in the literature for this class of system.

Classical Al planning, as exemplified by STRIPS [9] is not sufficiently robust in uncertain and dynamic
environments [23]. Reactive approaches, exemplified by Brooks’ work [6], were developed in response to this
problem. They operate very robustly in some uncertain and dynamic environments - namely those for which
the reactions have been pre-programmed. The limitations of purely reactive systems have led, in turn, to the
development of so-called hybrid systems, systems that integrate planning and reaction, e.g., Robo-Soar [16],
Universal Plans [24], AuRA [3], ERE [4], SSS [7], APE [27] and XFORM [20].

Our solution to the kitting robot problem improves on the state-of-the-art in hybrid systems by combining
a planner and a reactive system in such a way that the planner can iteratively improve the reactive system to
contain novel, autogenerated behaviors, while minimally interfering with the ability of the reactive system to
react at all times to the environment. Although we have used kitting as a driving application for this work,
our solution to the integration approach is general. This approach is equally applicable to other domains that
demand the integration of deliberative and reactive capabilities, such as mobile robots, autonomous explorers,
emergency response planning, and so forth.

In our approach, the reactive system (the reactor) is a real-time system that continually interacts with the
environment, and the planner is a separate and concurrent system that incrementally ‘tunes’ the behavior of the
reactor to ensure that goals are achieved. We call this the planner-reactor approach. The reactor is described
using a formal framework for representing flexible robot plans, the RS model [17,19]. Thus, the behavior of
the reactor, and the rules by which the reactor can be modified, become open to mathematical analysis. We
employ this to determine the constraints the planner must abide by to make safe adaptations and to ensure that
incremental adaptations converge to a desired reactor. We discuss our current implementation of planner and
reactor, work through an example from the kitting robot application, and present implementation results.

The remainder of the paper is laid out as follows: Section 2 introduces robot kitting and motivates it as
an application domain for integrating reaction and deliberation. Section 3 first reviews existing work in this
area, to illustrate the context for this paper, and then paints the broad picture of the ‘planning as adaptation’
concept that will be elaborated in subsequent sections. Section 4 provides some background information on our
action representation, the RS model. Section 5 presents the formalization of the reactor and safe adaptation,
and Section 6 addresses the issue of reactor convergence. Section 7 describes the planner and its process of
iterative adaptation. In Section 8 we present a detailed example from our planner-reactor implementation of a
robotic kitting workcell. In Section 9 we present performance results from this implementation.

2. The kitting robot application

In this section, the kitting robot application domain is described, with special attention to the characteristics
that demand integration of reaction with deliberation. Kitting is an important domain because it is one of
the very few well-defined industrial domains in which reactive systems, and integrated reactive and planning
systems, can be shown to be necessary and worthwhile,

A Kkitting robot is a robot system that accepts the raw materials for a product and places them into ‘kits’
- trays containing all the components needed to built a particular product. Simpler and cheaper automation
can construct the assemblies once they have been placed in the kits and routed appropriately. Kitting provides
the line stock availability, the line scheduling flexibility, and the reduced station cycle time productivity for
competitive results [26]. However, to achieve this ideal, the kitting robot has to ‘iron out’ all the uncertainties
associated with the assembly process so that it can be done by simpler automation. Instead of building a factory
full of expensive, intelligent robots, the intelligence and cost is focused into a small number of kitting robots
which feed the rest of the factory.

The kitting robot has to deal with the following sources of uncertainty and dynamic events:
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(1) Variable availability and arrival rates and poses of incoming parts.

(2) Variable quality in incoming parts. Faulty parts need to be removed before they either cause errors in
downstream automation, or become assembled into (faulty or low-quality) products.

(3) Mixed batches of kits. The robot may be serving more than one line, or the lines may be running mixed
batches.

(4) Variable availability of resources. Examples of resources are tools or machines with which the robot needs
to coordinate directly.

(5) Response to events in the downstream automation. For example, machines breaking down, or alternate
machine configurations.

(6) Response to factory management advice. For example, response to changing the batch mix or throughput,
or implementing once-off fixes for special situations.

To deal with the short term issues in filling assembly Kkits, e.g., selecting and executing actions to acquire product

parts, the kitting robot needs to be capable of real-time, reactive response. To handle longer-term concerns such

as changes in factory management instructions (new goals) or changes in the operating conditions (changing

environment), the kitting robot needs a deliberative or planning component.

Some aspects of planning for kitting, such as kit assembly orders, can be done off-line, in the same fashion
that assembly planning is done. Other aspects of the planning problem, nonetheless, need to be handled on-line.
Factory management instructions such as new batch mixes or parts substitutions cannot be entirely planned
off-line because the information about what kits are being mixed or what parts are substitutable is simply
not available. Similarly, changes in the operating environment such as bursts of errors in parts or failures of
resources cannot be entirely anticipated off-line due to lack of specific information. For these reasons, the
kitting robot needs a certain amount of on-line planning capability. The problem of building a robot control
system that successfully incorporates both reaction and on-line planning is still under active exploration by both
the Robotics and Al communities.

3. The planner-reactor approach

This section begins with an overview of current work in the area of integrating reaction and deliberation.
An informal introduction to our approach to integrating reaction and deliberation is then presented. Additional
detail and a formal treatment will be presented in subsequent sections.

3.1. Review of existing work

Purely deliberative approaches (e.g., [9]) are good at determining globally good courses of action for a
robot, selecting an optimal assembly sequence for example. They are not very robust, however, in the face of
changing or uncertain conditions in the robot’s environment. Typically, a deliberative system expends a lot of
effort deriving a good course of action for the robot, only to find on starting that the environment has changed
and rendered the actions unsuitable [22]. Purely reactive approaches (e.g., [6,13]) operate very robustly
in some uncertain and dynamic environments — namely those for which the reactions have been manually
pre-programmed. However, many application domains such as mobile robots [12], autonomous explorers [4],
emergency response planning [22] as well as our domain, robotic kitting, demand the integration of deliberative
and reactive capabilities.

One approach to allowing both on-line planning and also action is interleaved planning and execution (e.g.,
Robo-Soar [16]) - plan a certain amount, then execute these actions, then plan some again, and so on. This
approach requires one of either planning or execution to be taking place at any time. This causes problems
if the system is in a planning phase when an unexpected event occurs - planning interferes with reaction to
uncertain and dynamic events.
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Fig. 1. The planner-reactor-world system.

Schoppers [24] amongst others has proposed an ‘off-line’ generator for reactive systems; Xiaodong and
Bekey [28] also suggest something similar for an assembly cell equipped with a reactive scheduler. This
approach works well when the deliberative component can be separated ‘off-line.” We address the problems
that arise when both reactive and deliberative components need to be ‘on-line.’

Connell’s SSS [7] and Arkin’s AuRA [3] address this integration for mobile robots, In SSS the deliberative
and reactive components are asynchronously linked, allowing reaction and planning to occur simultaneously and
with minimal interference. This minimal interference approach is also necessary for the kitting domain, SSS,
however, is restricted to enabling/ disabling behaviors, while we need to be able also to autogenerate completely
new behaviors.

AuRA also allows for asynchronous interactions, and shares with RS an approach based on schemas. AuRA
employs a plan-then-execute paradigm, where a reactive plan is first produced in complete form, and then
loaded into the executor. In the case of highly conditional plans, such as we have for kitting, this may result
in unrealistically long planning delays. Thus, we would prefer to adopt an incremental adaptation approach to
the planner’s update of the reactive system. In this case, the adaptation problem is primarily one of adapting
structure as opposed to adapting parameters - adding in novel parts to, or removing parts from, an action
strategy.

Bresina and Drummond’s ERE [4] and McDermott’s XFORM [20] come closest to our approach: a planning
system that incrementally improves an asynchronously connected reactive system. A key difference is that the
kitting domain has a strong repetitive activity element, whereas ERE and XFORM are oriented to primarily
once-off activities. This repetitive element can be exploited to define a notion of iterative improvement that is
not available in a once-off activity domain.

For the overall system to retain a reactive quality, it is necessary that the deliberative and reactive components
of the systems be separate and function asynchronously. If they were not asynchronous, the reactive component
might need to wait for plans/instructions from the deliberative component, or wait for acknowledgement
before continuing with actions (as in e.g., a hierarchical scheme). The asynchronous relationship is key to

preserving reactive capabilities while, nonetheless, allowing for improvement of performance by the addition of
a deliberative viewpoint.

3.2. The planner-reactor architecture

In our approach, a planner is a system that continually modifies a concurrent and separate reactive system
so that its behavior becomes more goal directed. We refer to the reactive system as the reactor after the
terminology established by Bresina and Drummond. Fig. 1 illustrates the architecture.

Reactor

The reactor contains a network of reactions - hardwired compositions of sensory and motor actions. The
key property of the reactor is that it can produce action at any time. Unlike a plan executor, a reactor can act
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independently of the planner; it is always actively inspecting the world, and will act should one of its reactions
be triggered. A reactor should produce timely, useful behavior even without a planner.

Planner

The planner is completely separate from, and concurrent with, the reactor. Rather than seeing the planner
as a higher-level system that loads plans into an executor, we see the planner as an equal-level system that
continually tunes the reactor to produce appropriate behavior. The interaction between the planner and reactor
is entirely asynchronous. The input to the planner includes: a model of the environment in which the planner
is operating; a description of the reactor’s structure; and information from the user about objectives the reactor
should achieve (e.g., in the kitting problem domain, geometric goals such as kit layouts) and constraints the
reactor should obey in its behavior (e.g., batch mix or resource usage constraints). The planner continually
determines if the reactor’s responses to the current environment would indeed conform to the objectives. If not,

then the planner makes an incremental change to the reactor configuration to bring the reactor’s behavior more
into line with the objectives.

Planner-reactor interactions

As indicated in Fig. 1, there are two routes of interaction between planner and reactor.
(1) Adaptations. The planner alters the structure of the reactor by specifying adaptations.
(2) Perceptions. These are sensory data collected by the reactor to be sent to the planner.
An adaptation is essentially an instruction to delete part of the reactor structure or to add in some extra structure.
Each individual adaptation should be small in effect and scope; large changes in reactor behavior only come
about as the result of iterated adaptation. Large adaptations would be equivalent to downloading ‘plans’ to the
reactor, something we seek to avoid.

The knowledge needs of the planner and reactor are almost always different. The reactor uses sensory data to
determine whether to fire its reactions. The planner needs sensory data to allow it to predict the future progress
of the environment and the status of the reactor.

Before we present the planner-reactor approach in more detail, it is necessary to describe the language we
use to build and analyze the reactor.

4. RS

In [19] a special purpose model of computation for robot programming was developed. That work began by
listing the computational characteristics of robotics, including the importance of parallelism, the fundamental
nature of sensing and action, and of the sensing-action ‘loop’. The model was called Robot Schemas; RS for
short. It viewed robot programs as networks of concurrent interacting processes. In later work [17,18], the
model was extended to include a set of process composition operators to simplify the specification and analysis
of action ordering.

Much of the model was inspired by Arbib’s Schema Theory [2] (an approach to representation incorporating
both AI and Brain Theory perspectives). It was also strongly influenced by work in cooperating sequential
processes [15], and it belongs to a body of work on using that computational paradigm to model and analyze
real-time systems, e.g., LOTOS [5], COSPAN [14].

We will employ RS to represent the reactor and the mechanism by which it is improved by the planner. In
addition to being a formal model, RS has also been implemented as a robot programming language. There
are other existing reactive robot programming languages, e.g., Gat's ALPHA [13], Firby’s RAPS [10] and
McDermott’s RPL [21] amongst others. The single crucial difference between RS and these languages is the
RS emphasis on being able to analyze behavior formally. A second difference, introduced in [ 18], is the use
of RS to model environments as well as controllers.
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xp] ,pz(rl 5 T2)

PLp2 | process| rl.r2
et g s

parameters X results

Fig. 2. Notation for process parameters and results.

4.1. Processes

An RS description of a process, or network of processes, is called a schema. For example, P, (r) denotes a
process that is an instance of the schema P with one ingoing parameter m and one outcoming result r (see Fig.
2). Networks are built by composing processes together using several kinds of process composition operators.
This allows processes to be ordered in various ways, including concurrent, conditional and iterative orderings.

At the bottom of this hierarchy, every network must be composed from a set of atomic, pre-defined processes.
The set of basic schemas defines what processes are atomic.

4.2. Compositions

The RS composition operations are sequential A;B, concurrent A | B, conditional A:B, negation ~ A and
disabling A#B. We employ two non-atomic operators, synchronous recurrent A:;B, and asynchronous recurrent
A::B, and we define these below.

In sequential composition, the process T = P;Q is the network of the process P executed first, and when that
terminates, process Q executed until it terminates. This is used to enforce a strict ordering on operations, e.g.,
Placeyyp; Placejans.

Concurrent composition indicates that two or more processes should be carried out concurrently. This allows
us to represent a lack of ordering between activities, e.g., (Placeygy | Placeyam ), or parallel actions —
actions which need to be done simultaneously, e.g., squeezing an object obj with two fingers f1 and f2:
(ApplyForceﬂ‘abj | ApplyForceﬂ_gbj). Concurrent processes can communicate messages to each other via
communication ports.

Conditional composition allows the construction of networks whose behavior is conditional. The network of

= P:Q behaves like P;Q iff P terminates successfully. If P aborts, then Q is not carried out, and T aborts.
For example, in LidOpen,,, : Place, s, whether Place is carried out or not depends on whether LidOpen
terminates successfully or not. A wide range of traditional CASE and IF forms can be built from this operator,

Negation composition simply inverts the termination condition of a process. If A terminates successfully, then
~ A terminates unsuccessfully, and vice versa.

Disabling composition allows one process to terminate another. The network T = A#B behaves like (A | B)
except that it terminates whenever either process terminates.

None of the composition operators introduced so far allow us to have repeated actions. We will make use of
some special forms of recursion to achieve repetition. The schema T, = X,, : Tf(ay 18 an example of a guarded
recursive process definition. We call it guarded because the conditional composition ensures that the recursion
can be terminated by X aborting. X, must here be a process that evaluates some condition on its argument and
terminates successfully if the condition is true, but aborts if the condition is false. An example is the basic
process GTR,,, which succeeds if @ > b but aborts otherwise.

The final two composition operators are defined recursively in terms of the first four. In programming terms,
one could think of them as ‘macros’.

Synchronous recurrent composition is defined: A: ;B=A:(B; (A:;B)). The behavior of this composition is
similar to while-loop iteration with A as the test and B as the body of the loop.
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Asynchronous recurrent composition is defined as A::B = A : (B | (A::B)). This composition does not
iterate, but rather is a loop that ‘spawns’ off its body B every time its ‘condition’ A is satisfied.

4.3. If-Then-Else

We employ the following concise If-Then-Else form in the later parts of this paper and we therefore introduce
it here.

~ ( COND : THENPART ) : ELSEPART 1)

If the process COND terminates successfully, then by the definition of conditional composition, THENPART is next
executed, and if it terminates successfully, then this innermost conditional composition terminates successfully.
The negation composition, however, inverts the termination condition. Thus, again by the definition of conditional
composition, ELSEPART is not executed, and the outermost conditional composition terminates unsuccessfully.
On the other hand, if COND terminates unsuccessfully, then the innermost conditional composition terminates
unsuccessfully, but because of the negation, the outermost one terminates successfully and ELSEPART is executed.

4.4. Process evolution

The RS language as introduced to this point is sufficient for the purposes of building programs. However,
to analyze how such programs would behave, it is necessary to be able to examine how process networks
evolve over time, as processes dynamically terminate or are created. For this purpose the evolves operator was
introduced in [17,18]. This operator is defined as follows: We say that process A evolves into process B under

condition {2 if A becomes equal to B when condition {2 occurs; we write this as A Bk process may have
the potential to evolve to a number of different networks. For example the network A | B | € could evolve to
A | B if C terminates first, or A | C if B terminates first, and so on. A process must evolve to precisely one of
the networks to which it can potentially evolve.

Evolves can be intuitively understood as a “simulated execution” of the network. More formally, evolves is

axiomatized from the definitions of the composition operators, e.g., A;B 2, 8. To apply the evolves operator it
is necessary to know the successful and unsuccessful termination conditions for each basic process. Evolves is
not part of the robot programming implementation of R.S. Rather, this operator will be our main mathematical

tool in exploring how the reactor behaves under repeated improvement by the planner. (See [ 18] for a complete
description of evolves.)

5. The structure of the reactor

Recall from Section 3 that the reactor is an independent, reactive system whose structure is such that it
can be incrementally adapted by the planner. We begin the description of the reactor by introducing a concept
called reactor situations. This concept will allow us to build modular and efficient reactors. We then present
the fundamental description of the reactor as an RS process network. We show how this description allows the
reactor structure to be adapted incrementally. There are two important issues that arise when adapting a reactor:
First, what are the constraints on making adaptations to a reactor while it is operating in a ‘safe’ way (and
we shall define ‘safe’ more precisely). Second, what are the constraints on incrementally adapting the reactor
so that it will converge on the ‘best’ structure (and, again, we will define ‘best” more precisely). The formal
aspect of RS allows us to address these issues in a precise fashion.
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5.1. Reactor situations

Reactor situations are a mechanism to group related reactions together in a hierarchical fashion. A reaction
is a composition of a sensory process and a motor or action process. This modularity is important from three
perspectives:

(1) Design: It allows (human) designers to more easily understand the reactor and diagnose any problems that
may occur.
(2) Adaptation: It provides the planner with a unit around which to define safe changes to the reactor structure.
(3) Efficiency: It gives us a way to give computational resources to those reactions that currently need it, while
‘suspending’ those reactions that are not currently needed. ;

Intuitively: a situation being active expresses the appropriateness for the reactor to undertake the set of reactions
associated with that situation. For example, let FillTray situation contain a set of concurrent reactions which
together place the parts into the kit. When the situation FillTray is asserted, these reactions are enabled
and begin to execute. How and when these reactions produce actions, and thus how the kit is populated, will
be governed by the sensing process associated with each reaction. (When the sensing process terminates and
initiates the action process, we refer to this as the reaction ‘firing’.) One of the reactions in the situation should
fire only when all the parts are in the tray, and its action should be to terminate the situation and hence disable
the kit assembly reactions.

The FillTray situation might be asserted as the response action of yet another reaction, one which fires,
for example, whenever a kitting tray enters the workspace. In this way, situations can be nested hierarchically.

Many situations may be active at one time and thus the execution of their reactions will be intermingled.
If the kit that Fil1Tray puts together consists of three parts in a Kitting tray, then FillTray might consist
of one reaction that activates three instances of the LacksPart situation, each parameterized with one of the
three part types. When a situation is given parameters, such as the part type in this case, this means that all
the reactions in that situation can access the value of those parameters. The reactions in LacksPart would first
search for and then place into the kitting tray a part of the type given by the situation parameter. Activating
three instance of LacksPart in parallel would mean that the searching for and placing of the three parts are
interleaved as opportunities for each are provided in the environment (cf., opportunistic scheduling [11]).

5.2. Representing reactions and situations

Reactions are hard-wired responses to sensory conditions. They are represented in RS as compositions of
sensory and action processes. For example, a useful reaction for a kitting robot might be to notice anytime

some instance of part pl arrives in its buffer area and to acquire that object instance and move it into the
workspace. This can be expressed as follows:

P = Locate, (0bj) :; Placey ges

where Locate,, is a basic sensory process that inspects the world for an instance of part m and terminates
when it finds one, producing a pointer to the instance in obj. Place then acquires and moves object instance
obj to location dest. The recurrent composition ‘:;’ forces Locate to be continually recreated. This expresses
the conditional goal that whenever an instance of pl appears an attempt is made to acquire and move that
instance,

We introduce a small set of basic processes with which to build reactor situations in RS; the set is shown in
Table 1. This set provides an implementation independent view of situations. An instance of a situation is asserted
by the execution of the ASSERT; 1 po,.. process, where pl, P2,... are the values for the parameters associated
with the situation. Each situation instance is allocated a unique situation identifier k. A situation instance with
unique identifier & is terminated successfully by the execution of the SUCCEED; x process or unsuccessfully
by the FAIL,; process. The ASSERT process terminates only when its situation instance terminates, and it
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Table 1
Situation basic processes
® ASSERT; ;. Assert situation s and initialize the situation parameters to p, .. .. This terminates when
the situation is terminated and stops or aborts depending on whether FAIL or SUCCEED was used.
e FAIL;; Terminates instance k of situation s with fail status.
e SUCCEED; ; Terminates instance k of situation s with success status.

® SIT;(k,pl,p2,...) Terminates if an instance of situation s is currently asserted. k is the instance
number and pl, p2, ... are the current values of the situation parameters.

terminates successfully or unsuccessfully (i.e., aborts) depending on whether the situation instance terminated
successfully or unsuccessfully.

The SITs(k,pl,...) process, when executed, suspends itself until an instance of situation s is asserted. It
then terminates and passes on the details of the situation instance as its results. The results produced by SIT
are the unique identifier for this situation instance k and the values of the situation parameters initially set by
ASSERT.

We use the SIT, process to ensure that a reaction associated with a situation is only ‘enabled’ when an
instance of that situation is asserted. For example, let P1,...,Pn be the reactions for situation s, then we would
represent this in the reactor as the following concurrent network:

PS = SIT, :;P1 | SIT, ;P2|...|SIT, ;Pn= SIT: = Pi (2)
i€l..n

The “:;" operation ensures that as long as the situation is active, the reactions are continually re-enabled. Note
that once enabled, a reaction cannot be disabled until it has terminated. The asserting and termination of

instances of situation s happen as the side effects of ASSERT, and FAIL, or SUCCEED; processes in reactions in
other situations.

5.3. Adapting the reactor

The reactor consists of a network of situation triggered reactions (as described in the previous section) and
a well-defined interface through which the planner can modify the reactor structure. The general form of the
reactor is the following concurrent network of processes:

REACTOR = E#SP1 | ... | E,#SPn | ADD(k) :: (E;#SPk) (3)

where

(1) SPi is a situation-triggered reaction.

(2) E; is a guard process by which (by the #-composition) SPi can be removed by the planner.

(3) ADD is the interface through which the planner can add (by the ::-composition) new reactor structure in
the form E,,#PSm. :

The only ways the planner can affect the reactor is by causing an E, (for specified n) process to terminate, and

hence causing some part of the reactor structure to abort, or by causing ADD to terminate with a given ‘label’

m, and hence causing some additional structure to be added into the reactor. Of course, for SPm to be added

into the reactor, the process SPm must have been previously defined for RS. So when making adaptations, the

planner must first define its new additions as processes, and then instruct ADD to terminate and hence add those

new additions into the reactor. Note that if the set of SPm processes is fixed, then this system is very similar if

not identical to Connell’s approach [7]. However, in our approach the planner can define completely new SPm

processes at any point and use the mechanism above to enter them into the reactor. The examples in Section 8

will make this clear. This novelty is important: it is a lot easier to add a new kit model or object to the planner

than it is to write all the possible SPm processes that might be necessary to handle the new kit model or object.
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Strictly limiting the ways in which the planner can affect the reactor is important in formalizing the process
of adaptation. It is possible to envision versions of our architecture where the planner and reactor might exist
on the same processor, even as parts of the same piece of computer code. Even in this extreme case, there
would still be a logical division between the “planner”, as the part that does the adapting, and the “reactor”,
as the part that is adapted. Whether the adaptation to the SPi processes is internally (in the extreme case) or
externally (in the normal case) triggered, the crucial thing is to capture how changes can occur.

We can write down how the reactor is affected by the changes described in items 2 and 3 in our reactor
definition (3): '

R| (Ed#sPk) 2% R
R 2%, R | (E,#SPm)

(4)
where Dk is Ex — STOP

where Ak is ADD(k) — STOP & k=m

Saying that a process SP successfully terminates (under some condition) is the same as saying that SP evolves
to STOP (under that condition). So in (4) above, Dk can be used to delete reactions, and Ak can be used to
add reactions. Using the evolves operation, we can express the process of reactor adaptation as follows:

R —> R’ (5)
where R’ is the adapted reactor and a is some combination of Ak and Dk conditions.

5.4. Representing situation hierarchies

Situations can be nested hierarchically; that is, when situation a is asserted, it may in turn cause situation
b to be asserted, and a will not finish at least until b has finished. The difficulty in providing hierarchical
representation for reactions is that there is a danger of losing the ability to make small, incremental changes to
the reactor structure because of the depth of the hierarchy. We avoid this by implementing situation hierarchies
on top of a ‘flat’ set of reactions.

We use the following simple example to illustrate how hierarchically nested situations are represented and
adapted. We consider a reactor RO that contains a single higher-level situation sa, which in turn contains a

single lower level situation sb. We will assume the situation control processes shown in Table 2. This reactor
is represented as follows:

RO = (Ei#P1) | (Eo#P2) | (Es#P3) | ADD(K) :: (Ei#Pk)
P1=0Q :; ASSERT,, (6)
P2 = SIT,, :; ASSERT,;,
P3=SIT. :;RSB

The reactor is a set of concurrent processes as described in (3): P1, P2 and P3 plus their guard processes E;,
E; and Ej3 plus the ADD network. In P1, situation sa is asserted (“triggered’) by some process Q which is the
‘root” of the situation hierarchy for situation sa. There is one reaction for situation a, P2, the unconditional
assertion of situation sb. Situation sb in turn has one reaction in P3, the unconditional activation of some
arbitrary reaction RSB, which is the sole ‘leaf’ in the situation sa hierarchy. Note that even though sa and sb

are hierarchically nested, they are not represented in this fashion, i.e., nested, in the reactor. If we were to nest
them, we would get:

RO = (Ei#(Q :; ASSERT,, | (Es#(SIT,, :; (ASSERT | ...)))))
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Table 2
Situation control basic processes
@ WAIT, Terminates when no instance of situation s is active.
e KILL, Causes the process E, to terminate.

e INHIBIT, Prevents any reaction of situation s from being enabled.
e UNINHIBIT; Removes the inhibition on situation s.
« WAITINHIBIT; An atomic combination of WAIT and INHIBIT on situation s.

In the nested representation, reactions associated with sb are not even created until sb becomes asserted.
Thus, extensive nesting could easily prevent higher-level reactions from responding in a timely fashion to the
environment. In addition, the only way to adapt these reactions is to redefine the reaction for situation sa.
With hierarchical situations, if we nest the reactions, we lose the ability to make local changes to the structure
without redefining everything. Therefore, we ‘flatten’ the hierarchy. The reactions for all situations all start
concurrently. Now any reaction for any situation can be locally removed without changing anything else.

This flat representation of the hierarchy may seem inefficient since all situations are created at start up time.
In practice, this is not a problem, since the SIT process simply puts itself onto a queue awaiting the assertion
of its situation. Thus, although all situations are created, the only ones actually running are those that have
been asserted.

5.5. Safely adapting a hierarchical reactor

The adaptation equations (4) of the reactor capture structural change in a straightforward manner. Reactions
are removed immediately upon the termination of their guard (E) process, and are introduced immediately
upon termination of the ADD process. In practice this is not sufficient. It is not always appropriate to interrupt
a reaction that is in progress. New reactions may have to be started together, not one by one.

We argue that the following properties are desirable in an adaptation mechanism. When the planner initiates
an adaptation event, it must be:

(1) Consistent: Only old behavior (behavior generated by the old reactor structure) or only new behavior
(behavior generated by the new reactor structure) should be produced, not a mix of the two.

(2) Safe: No reaction should be interrupted by the change.

(3) Bounded: The adaptation event will terminate and the reactor will produce only new behavior within
bounded time.

We now introduce a general purpose adaptation mechanism that obeys these properties. We assume the situation

control processes shown in Table 2 and introduce the adaptation mechanism via an example.

Consider adapting RO in the example (6) of the previous section so that situation sa is composed of two
situations sx and sy in sequence, each of which have their own reactions RSX and RSY.

R1 = (E#P1) | (E4#P4) | (Es#P5) | (Ee#P6) | ADD(k) :: (Ex#Pk)
P1 = Q :; ASSERT,,
P4 = SIT, :; (ASSERT,,; ASSERT,,)
P5 = SIT,, :;RSX
P6 = SIT,, :;RSY

An adaptation event is initiated and controlled by the planner using the basic reactor adaptation equations (4).
An adaptation event occurs in two phases: first, the deletion of reactor structure occurs fop-down; second, the
addition of new structure occurs bottom-up. This separation enforces the consistency property. The first step
is to identify the highest-level situation involved in the adaptation; in our example, sa. We cannot begin the
change while any instance of sa is asserted, otherwise one of its reactions might be interrupted (violating
safety). By its definition (see Table 2) the WAIT,, process will delay until no instance of sa is asserted. To
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guarantee the boundedness property it is thus necessary to assume that all situations terminate. Furthermore,
the numeric upper bound on adaptation thus depends on the duration of the longest situation possible.

Once WAIT, terminates, it is necessary to stop any more instances of sa enabling their reactions while the
adaptation is in progress. The INHIBIT, process does this. However, if we do these actions separately, then a
could become asserted between WAIT terminating and INHIBIT starting, thus causing a violation of our safety
constraint. For this reason, we need an atomic composition of these two processes. By its definition (see Table
2) the WAITINHIBIT, process ensures that as soon as no instance of a is asserted, a is immediately inhibited.

We are now in a position to begin ‘surgery’. The reactor structure is deleted top-down using the KILL process;
in our example, KILL,; KILL; will cause the E; and E3 processes to terminate, excising P2 and P3 from the
reactor. The new structure is defined and introduced bottom up. That is, P4, P5 and P6 are defined, and ADD
then terminated with m = 6, 5 and 4. Each termination introduces one new reaction Pm. Note that instances
of sa may have become asserted while the adaptation was in progress. No sa reactions can respond due to
the INHIBIT process. When the new additions have all been made, the sa situation can be uninhibited with
UNINHIBIT, and all the new reactions become open for use at that point.

We argue that this mechanism is consistent, safe and bounded if the reactor abides by the assumption that all
situations eventually terminate. Consistency is enforced by the separation of the deletion and addition phases.
Safeness is enforced by the WAITINHIBIT process. Boundedness is enforced since the top-down and bottom-up
traversals of the situation hierarchy are guaranteed to terminate and provided that the initial WAITINHIBIT
eventually terminates. This latter can only occur if all situations eventually terminate.

It is possible to construct algorithms with stronger boundedness. For example, INHIBIT can be used to
‘freeze’ a running situation. However, these may require the planner to deliberate about cleaning up after the
interrupted situation. Requiring all situations to eventually terminate is one way to guarantee that there exists a
safe-state of the reactor in which changes can be made. Moreover, this is a local measure of safeness: only the
situations to be updated need be checked when a change is to be made.

For the safe adaptation mechanism to guarantee introduction of the updated structure we need to guarantee
that every situation will eventually terminate. Thus, we are constrained to write our situation reactions to always
terminate. Nonetheless, there are still times when we will need a situation to only terminate successfully when
the task succeeds. To handle this we will use a variation on ASSERT that we will call REASSERT defined as

follows:
REASSERT;, = ("~ ASSERT, ), ) :;STOP

The process REASSERT, will assert situation s and should that situation fail, then it will automatically reassert
the situation. The REASSERT process will only terminate when the situation terminates successfully.

6. Improving the reactor

The planner needs to be able to build a reactor that can operate over the entire range of environmental
conditions not just the current conditions. A reactor that fulfills this daunting criterion is called an ideal reactor
and is similar in behavior to Schoppers’ universal plan [25 |

6.1. The ideal reactor

For a given goal G and environment model EM, we write the ideal reactor as the RS process Rgy, .. The

behavior of the ideal reactor can be captured with the evolves operator. For the ideal reactor, only evolutions
of the following form are possible:

(R* | EM) — (R" | GEM) (7)
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That is, when the ideal reactor is run concurrently with a process, EM, implementing the environment model the
only possible evolutions are those leading to an environment in which the goal is satisfied GEM. This is a very
general description, but it is sufficient for defining reactor improvement.

The ideal reactor is the most robust reactor possible; however, it is likely to be a very large and complex
machine. It is unrealistic to expect that the planner will always be able to generate the ideal reactor all at once,
for the following reasons:

(1) It may not have sufficient time because of time constraints on actions in the environment.

(2) There may be too much uncertainty in the world model for the reactor to be constructed without doing
some more sensing.

(3) It may not be possible to ever build the ideal reactor because of resource and action constraints.

Thus, the ideal reactor is an eventual target for the planner, but since it cannot be constructed all at once, an

equally important issue is finding a method that constructs the ideal reactor in ‘useful’ increments.

6.2. Incremental construction of the ideal reactor

It is reasonable to demand that the planner respect the following constraint: Incremental changes to the
reactor should result in another working reactor which is at least as capable of achieving its goals under as wide
a range of conditions as the original reactor. We therefore introduce a restricted version of the ideal reactor, R,

(R® | EM) = (R | GEM) (8)

This says that as long as assumptions @ hold, then R” behaves like the ideal reactor, R*. In planner terms, @
is a set of assumptions under which R has been constructed. Thus there are no “unused” assumptions in w:
the planner does not need to include any assumption it doesn’t use. For the remainder of this work we will
assume that @ is finite. (To be correct, the w-ideal reactor for environment EM and goals G should be written
RiEm.g-)

This view of @ suggests the following incremental plan construction strategy: w is initially chosen to allow
the planner to quickly produce a working reactor, and then gradually w is relaxed over time. We define our
assumption relaxation priorities by imposing an ordering ‘>’ on @ based on a function /(). We can now rewrite
the evolution of the reactor under adaptation by the planner (5) as:

lef'l—*R"’zi’R"’Bi,,,_ii;R* &
for l(@') > l(@?) > (@’) >+ >0

where @' is some combination of Ak and Dk conditions. A good choice for [(@) is a measure of how unlikely
it is that @ holds in the environment. This ordering enables the planner to build reactor adaptations to deal
with relaxation of the least likely assumptions first. Only then it will take care of the relaxation of increasingly
likely assumptions as it has time. This is the ordering we employ in our implementation (Section 8).

There is a surface similarity between this strategy and the anytime planning work [8]. The key difference
is that an anytime planner produces a plan whenever it is asked (i.e., it is based on time), whereas this
algorithm produces plans in “decrements” of @ (irrespective of time). We can adopt this approach because we
do have a good measure of progress, namely w, and because we do have the reactor to handle time-critical
responses.

The process of changing one w-ideal reactor to another in this ‘chain’ will typically involve a number of
discrete structural changes to the reactor. Consider two adjacent w-ideal reactors in the reactor improvement
chain show in (9) above; the chain of partially complete w-ideal reactors between these two is as follows:

1 . 2 3 3 i
o (2T ; i oan i ay i1
I I R R s R
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where R is the partial reactor containing the jth update to the wi-ideal reactor. We demand that each such

partial w-ideal reactor abides by the behavioral constraint that it behave at least as good as the previous ideal
reactor.

o' Af(e))
—

(R% | EM) (R% | GEM) (10)

where ej,- describes how ‘incomplete’ the reactor is (what work remains to be done on the reactor to bring it to

the a_a"+‘~ideal reactor) and f() maps this onto a set of evolution conditions. We place the following constraints
on e:f
@' =" A f(ef)
¢ > e . (11)
Yidk >0 st e}:O

These conditions allow us to guarantee that the planner can guarantee convergence from the with-ideal reactor
to the »'*'th-ideal reactor.

The w-ideal reactor description (8) only specifies what happens if w holds. A safety constraint is also
necessary (o guarantee reasonable behavior in the case that some assumptions in @ don’t hold. Let EM” be the
process model of the environment in which the set of assumptions y holds. By a changing environment we
mean one in which y is not constant. The ideal reactor constraint can now be written as

(R® | EW ) 2S3 (R* | GEW ) (12)

If @ Z v, then that part of the reactor that relies on the assumptions in @ — 7y is compromised. For the planner
to revise these parts the reactor must be capable of noticing that the assumptions in @ — y have failed. Such a
reactor will be referred to as an observant reactor, and from now on that we assume we are always working
with an observant reactor. An additional constraint for convergence is thus that the planner be able to change
the relaxation ordering to incorporate the immediate relaxation of a failed assumption, i.e., that the planner be
capable of relaxing assumptions in any order. Notice that reintroduction of an assumption into the environment
is not a problem - the w relaxation algorithm is monotonic with respect to assumptions.

An important timing issue, related to the previous discussion of anytime planning, but not dealt with in this
paper, is the issue of guaranteeing the planner response time. The spirit of this work has been to position the
time-critical code in the reactor, and leave the planner with minimal time-constraints. For this reason, rather
than produce a time-constrained planner, we have addressed the issue of making the reactor operate safely while
changes are in progress.

While the planner is working on revising the reactor, it’s necessary to ensure some reasonable behavior from
“faulty” components. This is a difficult constraint to implement generally. What is really needed is the guarantee
that the faulty reactor won’t do anything to the environment that would prevent any future w-ideal reactors
from working by, e.g., breaking some crucial component. We settle for a more restricted constraint here: that
the reactor exhibit no behavior based on the faulty assumptions. This can be implemented simply by disabling
all reactions that depend on the invalidated assumptions in @ — 7.

7. The planner

We begin this section with a description of the basic planner algorithm. More detail is then presented on some
of the unique aspects of the algorithm, such as reducing planner ‘expectations’ and generating perceptions. The
planner is constructed on an Interval Temporal Logic (ITL) reasoner, and this reasoner is briefly presented.

The section concludes with the verification that the planner meets the convergence constraints presented in the
previous section.



D.M. Lyons, A.J. Hendriks/Robotics and Autonomous Systems 14 (1995) 255-288 269

Gc)aiH

! AR, i [reactions

H B-h™
! e, = H
ST*' pcmcptns—_"‘r‘"""_"‘PAi h E

R o x| O 5
. VP, Fi, o SR
{ PLANNER { REACTOR; | WORLD

Fig. 3. Planner-reactor interactions.

7.1. Planner algorithm

At every planner iteration t, based on the environment model EM, and current goals G, the planner generates
what we call an expectation, E,; an abstract description of the changes it expects to make to the reactor to
achieve G,. Al every iteration, the combination of the reactor model R, and the expectation is exactly the
w-ideal reactor (where @ is the current set of assumptions the planner is working with).

This expectation is what we map to the ej} function in the previous section, equation (11). The process of
incremental improvement of the reactor can now be seen as incremental reduction of the planner’s expectation
by some AE, and corresponding increment of the reactor AR;, until when E is null, the current reactor is exactly
the w-ideal reactor. Additionally, when assumptions are used to construct the reactor increment, the planner
will insert assumption monitors A/, into the reactor. Similarly, if the planner needs specific information for its
own planning purposes, it can insert additional perception processes AP;, processes that collect information in
the reactor and report back to the planner.

The input/output interactions between planner and reactor are as shown in Fig. 3. The planner incrementally
produces changes in the reactor structure AR, plus the associated assumption monitors A/; and additional
perception processes AP,. It receives back information from existing perception process VP; and any signals
from assumption monitors that have failed FI,. The block diagram of the planner’s internals is shown in Fig. 4
and explained here. Based on the environment model EM and the goals G, the planner accumulates a current
Problem-Solving Context (PSC). Within that PSC the planner generates an abstract plan, the expectation E;.
The PSC also provides the current set of assumptions Assm;. This set is used to filter the environment model to
generate a simpler model. The current expectation E, is analyzed to determine how much of it can be reduced
AE,. This incremental expectation is decomposed (in the planning sense) in the context of this filtered world,
to generate an adaptation of the reactor AR, and the set of assumption monitoring processes to go along with
it Al,. A set of perception requests can also be generated at this point AP;; these requests will return data
that clarify uncertainty in EM, and allow further decomposition of E;. The assumption monitor processes may
signal that the assumptions they protect have been violated; this results in Assm, being decremented by that
assumption, and it may thus result in E; being revised and probably increased again.

7.2. Expectation reduction

To reduce an expectation, the planner reasons within a Problem Solving Context consisting of the relevant
parts of the environment model EM, the action repertoire A and the assumptions Assm,. The outcome will be
a reactor adaptation AR, the reactions necessary to implement the expectation reduction AE,.

The manageable size of AE, is constrained by the following factors:

(1) The response time of the planner. This can come from the design specification of the planner, or from the
temporal constraints on goals and actions in the plan.
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Fig. 4. The planner architecture.

(2) The effects of uncertain knowledge on the plan; the planner may need to issue perception requests before
more of the expectation can be reduced.

(3) Resource use and mappings.

Initially, the planner reduces an expectation by looking for an abstract plan that achieves the given goals. This
abstract plan, representing the structure of a more detailed plan, is maintained through insertion of situations
into the reactor. The more detailed actions corresponding to the expansion of an abstract action are encoded
as reactions in the situation, representing the abstract action, Any reactor segment sent to the reactor must be
directly executable. However it need not necessarily be concrete, i.e., a reaction of a given situation may only
contain a STUB process, a process that acts as a ‘placeholder’ and, when executed, only sends a perception back
to the planner stating that this particular situation has become active. We call this signal a stub trigger. In this
way, the planner can adapt the reactor without needing to fully refine its plan first.

Before inserting any adaptation into the reactor however, the planner proceeds to detail the first step in the
abstract plan, such that for this first step a concrete plan is in place (i.e., no STUB) when the adaptation is sent.
This avoids an immediate stub trigger signal from the reactor for this segment. Instead it allows the reactor to
start operating immediately, while the planner can proceed in parallel to flesh out other abstract parts of the plan.

Barring any perceptions received from the reactor, the planner continues this process, incrementally fleshing
out abstract segments. At every iteration, the expectation is reduced by fleshing out a situation. The situation
hierarchy is restricted to be an acyclic digraph, i.e., abstract actions used higher in the plan hierarchy cannot
be used to construct a concrete reaction. :

If all the reactor segments are made concrete and all the STUB processes removed, then the planner has
achieved an w-ideal reactor, and can proceed to relax the next assumption.

Constructing adaptations

Once the planner has generated a possibly partially abstract plan, it is ready to send it to the reactor as an
adaptation. The structure of the abstract plan is preserved through the definition of a situation hierarchy (in the
flat representation). An adaptation contains the definition of new reactions (the ‘P’ processes), and the steps
needed to safely change over a situation from the old to the new reactions.

If any of the new segments rely on assumptions, the adaptation will contain additionally an assumption

monitor, a process that repeatedly checks whether the assumption still holds in the environment, and, if not,
will signal a perception back to the planner.

7.3 Perceptions

Perceptions may change the course of operation of the planner. They provide key information for the planner
0 decide what part of the reactor to elaborate upon next. Apart from informational perceptions, the planner

relies on four specific perceptions to set its priorities for the planning process. These perceptions are the
following:
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(1) Guard-kills. When an E process (a ‘guard’) is killed, the planner is informed. E processes form the basis
by which the planner can remove old structure and install new structure in the reactor. This perception
indicates the completion of an adaptation to the planner.

(2) Stub trigger. The execution of a STUB process in the reactor signals the planner that the reactor has started
to execute a segment for which no concrete plan yet exists.

(3) Situation failure. This signals the planner that a reactor segment failed (usually through an invalidated
assumption), and needs to be modified as soon as possible.

(4) Assumption failure. The planner installs dedicated processes (Al;) in the reactor to monitor assumptions.
Should one of the assumptions be invalidated, the associated monitor will signal the planner.

Guard-kills govern the adaptation cycle and are necessary for the planner to preserve the safety of the adaptation

process. If a situation is still being adapted, the planner cannot send out a next adaptation for that same situation

since the safe adaptation mechanism is only safe for one adaptation per situation at the time. Thus the planner
holds back the next adaptation instructions for that situation until the guard-kill perception is received.

The other three types influence the planner’s priority in planning adaptations. The planner uses these to
decide which part of the expectation to reduce first. In effect, the environment (through the reactor) tells the
planner what parts of the reactor should be considered.

The priory ordering for planning is the following:

Failed situations > Failed assumptions > Failed active stubs > Failed quiescent stubs.

The planner relies on situation failure and assumption failure signals to “understand” what is happening in
the environment. The general problem of deducing that an assumption has failed, or determining why a
situation has failed, is very difficult and might require complicated error models or causal reasoning. For our
implementation, we have restricted ourselves to a set of assumptions whose validity can be reliably assessed
with direct measurements. In similar spirit, we interpret situation failures as evidence of assumption failures.
We justify making this simplification by noting that the issues of deducing assumption failures could be tackled
independently of this work on incremental adaptation. It is also, however, an area we wish to study further.

Forced relaxation

Any of the assumption monitors or stub triggers in the initial reactor segments can potentially signal the
planner and divert its attention from the a priori established ordering of assumptions relaxation. Failure of a
situation to successfully complete its reactions is also cause for a perception. These three sources of perceptual
input have different effects on the planner.

On receiving a stub trigger signal, the planner redirects its focus of attention for refining the abstract plan to
the portion of the plan containing the stub trigger.

An assumption failure perception has a larger effect than simply refocusing attention. The assumption failure
signal causes the planner to negate the assumption in its PSC and begin to rebuild the affected portions of
its plan. If a situation relying on that assumption failed, that particular situation is given highest priority for
adaptation, even though other assumptions may have priority in the assumption ranking. This means the planner
may have to turn its focus back to parts of the plan it had previously considered finished.

Apart from its cause, a forced relaxation or refinement results in the same reactor segment and adaptation
sequence as a normal relaxation or refinement. Once the planner has achieved a complete w-ideal reactor, it is
ready again to pop up to the outer loop and select an assumption for normal relaxation.

7.4. The kernel of the planner

The kernel of the planner is an Interval Temporal Logic (ITL) reasoner, based on Pelavin’s logic [23]. The
planner architecture is built on top of this kernel. World models are maintained as sets of temporal predicates
and rules. Temporal relations between intervals of time are maintained in a network and new relations are
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atp_actionschema Lacks <type,a><>
intervals i1,i2,i3,1i4, i5;

applicability: AVAILABLE(type) il and ITL(il, encompasses, Lacks);

Q

ACT () @ i2 and ITL(i2, encompasses, Lacks) ;
executability: PART(a,tray) @ i3 and ITL(i3, encompasses, Lacks);

POSITION(a,trayarea)@ i4 and ITL(i4, encompasses, Lacks);
effects: INTRAY (type,a) @ i5 and ITL(Lacks, meets, i5);
expansions: Exists x,il1,12:

PART (x, type) @ i1 and ITL(il, encompasses, i5)
and IN(x,a) @ i2 and ITL(i2, encompasses, i5);
endactionschema;

Fig. 5. Example (abstract) action schema.

enforced by constraint propagation [1]. Formulas in ITL are first order logic predicates augmented with a
modal operator @, e.g., IN(A, D) @il specifies that the predicate /N(A, D) should be evaluated over interval
i1. In addition the special predicate ITL(intervall, itl-relation, interval2) is used to specify constraints between
intervals, e.g., ITL(i1, meets, i2) specifies that the interval i1 finishes Just as interval of time as {2 starts. Other
relations we use here include equal (both intervals denote the same time period), disjunct (the intervals do not
overlap in time), finishes (both finish at the same point, and encompasses (the second is a subinterval of the
first).

Actions have executability condition and effect formulas. Once the executability conditions are satisfied,
execution of the action will guarantee that the effects will occur in the world. The use of ITL as the basis for our
planner enables us to specify and reason about communicating concurrent actions, since executability conditions
can include conditions that must hold while the action is executing. Action schemas can be either abstract or
basic. A basic schema represents a directly executable RS action schema, an abstract schema describes bigger
chunks to quickly generate a plan outline, which later can be refined appropriate to environment specifics. The
structure of the plan outline is retained in the reactor by encoding an abstract schema as a situation.

An example of an abstract action schema is given in Fig. 5. This action schema Lacks has two input
parameters fype and a, and no results. Its specification uses five (extensionally qualified) intervals of time il1-
i5, as well as the schema name, which denotes the interval of occurrence of the action in the specification. For
search control reasons, the executability conditions are split into the executability conditions proper, conditions
that the planner can backchain on, and applicability conditions, which have to be satisfied at action selection
time. Lacks is an abstract schema, and therefore has expansion goals, besides its effects (a basic schema has
no expansion or goals). In a plan refinement stage, these goals are additional goals that need to be satisfied.

A world model consists of a set of temporal predicates, describing the world in conjunction with a causal
theory, describing consistency rules or derivable information. In Fig. 6 two examples of causal theory rules are
given. The first rule indicates that some types of parts are graspable, the second one specifies that an object can
occupy only one position at the time., Finally, goals and assumptions are also specified as temporal predicates.

7.5. Convergence

This section now concludes with the verification that the planner does obey the convergence constraints
described earlier. The block diagram in Fig. 4 is the basis of our argument. Convergence takes place in two
loops: in the internal loop an expectation E, based on a specific set of assumptions Assm, is gradually reduced
to zero and the reactor increased to contain the plan for that expectation; Assm, is then reduced by the least
likely assumption(s) and the inside loop again activated. Consider the outer loop first. In this loop, if an
assumption failure occurs, then the set of assumptions will be prematurely relaxed. For convergence to occur in
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;;; some parts are graspable
Forall x,y,i: PART(x,y) @i and ( y = body or y = cap or
y = motor or y = tray )

=> GRASPABLE (x) @ i ;

;;; only one position can be held at once
Forall x,y,z,i1,i2: POSITION(x,y)@il and POSITION(x,z)@i2 and y /= z
=> ITL(i1, disjunct, i2)

Fig. 6. Example consistency rules.

a worst-case world, it would have to occur despite repeated assumption monitor failure. Let us assume a finite
set of assumptions. This convergence constraint just says that if R is to converge in a worst case world, then it
must be possible to relax the assumptions in any order and still arrive at the ideal reactor.

In the internal loop, we need to show that E, can be reduced incrementally to zero. The initial expectation
reduction is the construction of a first abstract plan from the goals. Subsequently, this abstract plan is incre-
mentally refined with its structure maintained in the reactor as a situation hierarchy. The refinement proceeds
a situation at the time, and since the hierarchy is limited to be an acyclic digraph, no recursion can occur.
Given a finite set of abstract actions, this implies a finite depth for any situation hierarchy. If every individual
refinement can be planned for, or shown to be impossible given the information available to the planner, then
eventually the whole plan will be made concrete in finite time. Nonetheless, specification of impossible goals
will result in a reactor that contains only a partially concrete situation hierarchy.

8. The kitting robot implementation

Up to this point, the planner-reactor concept has been presented in a more or less domain independent fashion.
This section describes the implementation of our planner-reactor based robot kitting workcell and provides some
detailed examples of the system in operation.

8.1. Review of the kitting robot problem

Assembly components are fed to the kitting robot on a conveyor belt. The robot must take parts off the belt,
place them in the appropriate slots of a kitting tray, and then place the kitted tray onto the belt. The trays are
stored in a stack in the robot’s workspace. The product we are kitting is a small DC servomotor sold by Philips.
It has three parts: a cap, a motor and a body, all of which have a number of variants (see Fig. 7).

The purpose of the kitting robot is to produce kits, filtering out the various sources of uncertainty in parts
supply. The parts supply may be uneven and biased towards one type of part (starving others). The parts may
be of mixed quality. It may be possible to substitute one part variant for another (if running mixed batch).
Parts may move around while on the belt. The kitting tray may be disturbed while kitting is in progress: it may
be moved and/or parts may be added or removed. Furthermore, automation downstream of the kitting robot
may or may not be in a position to accept more trays and depending on factory policy in-line buffering may or
may not be allowed. The Kitting robot needs to counter each of these sources of uncertainty. Furthermore, the
kitting robot has to respond in a timely fashion to task changes issued by factory management.

8.2. Kitting assumptions

The planner-reactor approach provides a way to incrementally construct reactive systems with improving
performance. At the heart of this iterative mechanism is the concept of characterizing the environment by a
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Fig. 7. The kit tray and parts.

set of assumptions and methods to detect whether they hold or not. In the case that the environment goes

through regimes where different subsets of assumptions hold, the planner can capitalize on this, especially

when new factory goals have been received and resultant changes in behavior are necessary. The planner uses
these assumptions to help it to quickly build a reasonable reactor. Later, as it has time, it relaxes assumptions
and fashions improved versions of the reactor.

The set of assumptions we have developed for the kitting environment is described below in reverse or-
der of likelihood of holding; i.e., in the order in which the planner considers relaxing them. Some of the
assumptions, such as that of the quality and substitutability of parts, must eventually be relaxed to get to a
robust workcell. Some other assumptions, such as that of cooperation in kit assembly and tray disturbance,
describe contingencies that make a more versatile workcell, but are not necessary for a robust system. Still
other assumptions pertain to unusual operating conditions, such as the assumptions of no competition and no
downstream disturbances.

(1) Assumption of Parts Quality (AQ): all the parts coming into the kitting workcell are of good quality and
do not need to be tested. When this assumption is relaxed, the robot must test parts before they are used,
and reject bad quality parts.

(2) Assumption of non-substitutability of parts (AS): each part has only one variant. When it holds, it rules
out having to reason about product variants and mixed-batch kitting.

(3) Assumption of unfilled trays (AF): all trays arrive empty. This means the robot doesn’t have to check trays
when they arrive. If trays are being routed back to this cell as rejects from downstream manufacturing,
then the robot has to determine which new parts each tray needs.

(4) Assumption of no competition (ACT): parts placed into a tray stay there. This will only be violated in
the case of contentions between multiple workeells or faults in the transport system.

(5) Assumption of no cooperation (ACP): the robot is not sharing the job of populating kits with other
workcells. Thus, it only expects kits to be finished when it explicitly finishes them.

(6) Assumption of no tray disturbance (ADT): trays remain where they were put. Again, this would only be
violated if the kitting job is being done cooperatively between several robots or between humans workers
and robots.

(7) Assumption of no parts motion (AM): the kit parts do not move around once delivered on the belt to the
workcell. This means the robot can take one snapshot of the scene at the start of the kitting sequence and
the part positions will be valid throughout.

(8) Assumption of no downstream disturbance (ADD): downstream automation is always ready to receive
finished kits. If downstream automation signals a problem then ADD is withdrawn, and it is reinstated
when downstream automation signals that it is again willing to accept kits.

(9) Assumption of parts ordering (AO): the kit parts must be placed in the kit tray in a particular ordering.
This gives the kitting robot the ability to modify parts ordering should that be warranted.
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8.3. The kitting task implementation

In this section, we will work through an example of adapting a kitting reactor based on goals. We will
initially assume what we refer to as a null reactor - a reactor with only the basic sensory and exploratory
behaviors necessary to support the kitting task. The first step in our adaptation example will be the reception
of new goals - the goal to begin constructing the servomotor kits — from factory management.

New goals
The goal received from factory management is:

Vi, il : Instance(tray, t) @il =
32 : (FullTray(t) A ToDownStream(t)) @i2 A ITL(i2, finishes, time) (13)

This conditional goal specifies that whenever there is an instance of a tray, then that tray should be filled with
parts and placed in the output buffer. The ITL predicate in the consequent assures that, once assembled, the kit

stays together by requiring the goal interval i2 to finish the special interval fime, denoting the entire time line.
The goal FullTray(t) can be written out as:

FullTray(t) @il <= :
[3x, y, z Instance(cap, x) A Instance(motor, y) (14)
A Instance(body, z) A Contains(t, x,v,z)] @il

The planner begins by constructing its Problem Solving Context (PSC), as described in Section 7. This is
the ‘frame of mind’ in which it is going to plan for this goal. In our domain theory, goals are associated with
relevant actions and domain rules. The planner accumulates this information in the PSC. For example, Instance
brings in potentially useful actions such as Find (to locate an instance of an object model using vision) and
Get (to acquire an object); Contains brings in a number of subgoals, such as In(t, x). In addition, the domain
rules may specify default assumptions. In this example, the action Get brings in the assumption of no object
motion AM. Find brings in both the assumptions of good parts quality AQ and no substitutability between
parts, AS. Although the planner does not know whether any of these assumptions actually do hold in the current
environment, it always begins by assuming they do and asserting them in its PSC.

The planner invokes its ITL reasoner to attempt to construct a series of actions from its PSC that will achieve
the goal. Chaining from effects to preconditions may drag in new actions and new assumptions. The planner
will proceed with working on its abstract plan in this fashion until it has found an action that can be executed
immediately. In that case, the planner determines how much of the abstract plan is already in the reactor and
how much needs to be added via adaptations. This ‘difference,” the new reactor structure that needs to be added
in to implement the current abstract plan, we will refer to as a reactor segment.

All portions of a reactor segment must be executable. Any parts of the abstract plan that are not immediately
executable are replaced in the reactor segment with stub trigger processes. These processes will warn the
planner should the reactor need these reactions fleshed out. Any part of the plan that relies on assumptions

is equipped with assumption monitor processes. Should the monitored assumption not hold when the relevant
reactions are active, then the planner is informed.

Generation of the first adaptation

Regressing on the conditional goal gives us the first abstract description of the reactor segment: first locate
any tray, then fill that tray, and finally move the tray to the belt for transfer to downstream automation. The
first immediately executable action is the action to acquire a kitting tray.

Recall that the reactor is represented as a set of concurrent situation-triggered reactions as shown in equation
(2). The planner defines the reactor by constructing a set of situations and for each situation a set of reactions
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. AcquireTray = Fill Tray & FinishTray
Find

Fig. 8. Initial adaptation to kitting reactor.

that should be enabled in that situation. Situations can be hierarchical in that reactions for one situation may
assert a second.

The process descriptions below show a reactor segment generated by the planner for this initial situation. !

PO=STOP :; ASSERTKmfng
P1 = SITkining (k) :;

(i (REASSERTAcquir!ﬂ'ay(x‘) . REASSERTFiiﬂPuy,xl
: REASSERT Fipishtray, 1) : SUCCEEDKiing 4 )
: FAILK:’m‘ng,k)

P2= SITAcquirrTray(k) Y

(= (REASSERTfingpar(x1) : MOVey1 trasarea
: (UPDATEAcquireTmy,k.xl > SUCCEEDAcquiuTmy,k) )
: FAILAcquirv'I)'ay,k)

P3= SITFr'ndPaH(k) s

(™ (Findygy(xl) : (UPDATEfindpart 1} SUCCEEDFingpart) ) : FAIL Finapari)
P4= SITm{rm_.,.(k, x1) 1 (STU'Bn]nh,y : SUSPEND:0g0; FAILF,-;m-a}..g)
PS = SITrinishtray(k, X1) 3 (STUBFinishtray : SUSPEND000: FAILFinishTray,k)

Fig. 8 shows the situation hierarchy for this reactor segment. In the figure, situations are shown as lightly
colored arrows. The lowest levels of the situation hierarchy contain only reactions. These are shown as darker
arrows. The situation hierarchy figures are read as follows. The topmost line is the highest level situation
(e.g., *Kitting’ for this initial reactor). The line underneath this indicates how this situation is broken down
hierarchically. For example, in this initial reactor, Kitting is broken down into a sequential composition of
first ‘AcquireTray’ then ‘FillTray’ and then ‘FinishTray’. Recall that activating a situation only means that a
particular set of reactions now become enabled. In ‘AcquireTray’, these are the reactions to bring a tray into
the workspace; in “FillTray’ they are the reactions to place all the parts into the tray. The actual behavior of
the robot in a situation will simply depend on what choices the environment offers. In this initial reactor, the
‘AcquireTray’ situation is in turn composed of a ‘FindPart’ situation followed sequentially by a Move reaction.
The situations ‘FillTray’ and ‘RemoveTray’ simply have the placeholding STUB reactions in them.

Each reaction in the segment is in the special conditional form ( ~ (Cond : IfTrue) : Else) introduced
in Section 4 and employs the REASSERT process to continually reassert failing situations. Note that PO is
necessary to assert the topmost situation repeatedly. The reactor segment uses three reactions: The process
Move,p; o Tepositions a grasped object obj to a location Joc. The process Find,(p) locates and acquires an
object of type m and returns a pointer to the sensory model for this instance of the object type. The process
STUB simply sends the stub trigger signal back to the planner.

U All the reactor segments in this paper have been simplified to omit statistics collection and other inessential processes that are present
in the actual implementation.
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Assumption monitors

All the assumptions used by the planner in coming up with this first section of code have to be monitored.
In our current implementation all actual assumption monitoring, except for the motion assumption, has been
bypassed. To monitor an assumption, the planner creates an instance of the ASSUMONITOR process giving as
arguments the name of the assumption to monitor (using the acronyms introduced earlier) and how often
(in milliseconds) to check it. Checking an assumption reduces (except for the motion assumption) in our
implementation to simply checking a flag. An external agent can signal that an assumption has been violated
by setting the appropriate flag. If there is a monitor process for that assumption it will eventually discover the
assumption failure and send a signal back to the planner to let it know the assumption has failed. In contrast to
this approach, the assumption monitor for the motion assumption AM will report assumption failure when the
robot fails to find an expected part at its expected positions.

The planner produces the following assumption monitors for the first adaptation:

P6 = ASSUMONITORAS, Teheck
P7 = ASSUMONITORAQ, 7check
P8 = ASSUMONITORAF Teheck
P9 = ASSUMONITORAcP, Teheck
P10 = ASSUMONITORApPT 7eheck

where Tcheck = 2000 ms. This monitors will be added into the reactor in exactly the same fashion as the reactor
segments PO-P5 using the safe adaptation procedure introduced in Section 5.

Refinement to the first ideal reactor

Having issued these adaptations, the planner proceeds to deliberate further on the abstract plan. Each time it
reaches an action that can be directly executed, it adapts the reactor to include the new portion of the abstract
plan. For example, having completed the reactor segment above, the next concrete action that the planner
reaches is in the refinement of the FillTray situation, acquiring and placing the first component into the tray.
The reactor segment resulting from this refinement is as follows:

Pil= SITF,-HTmy(k, xl) =

(= ( (REASSERTLacksMoror.x1 | REASSERT scksCap.x1 | REASSERT LacksBody,x1)
: SUCCEEDFiimvay,k) : FAILFimrayk)

Pl2= SITLacks'Momr(ks x‘) 5

( ~ (FindGetInsertuoor,x! : SUCCEED scksmorork) : FAILLacksMotor.k)
P13 =8ITracksCap (k, X 1) 33 (STUBLackscap : SUSPENDypg0; FATIL qcksCap.k)
P14 = SIT acksBodv(k, x1) 5 (STUBLacksBody - SUSPEND2000; FAIL acksBody,k )

Here, the reaction FindGetInsert, , is a single, simple hardwired instruction to look for a part of type
m and place it into the tray f. It ignores issues of part quality and so on. This reactor segment requires the
replacement of the FillTray situation previously loaded.

If the planner is not interrupted from this course by assumption failures or stub triggers, then eventually the
entire abstract plan is fleshed out and sent via adaptations to the reactor. In our example, there are three more
reactor segments produced after the two above, to fully flesh out a working kitting reactor: The two remaining
LacksPart situations and the FinishTray situation.

The first ideal reactor, that is the first reactor that contains a full kitting task, is shown in Fig. 9.
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Fig. 9. First ideal kitting reactor,

Normal assumption relaxation

Once the planner has an ideal reactor established for a given set of assumptions (all assumptions initially),
it then begins deliberation on relaxing the assumptions. The order in which assumptions are relaxed, apart from
forced relaxation due to assumption failures, is the order of likelihood of assumptions not holding, and is part
of the input information to the planner. This ordering is the order that the assumptions are listed in Section
8.2. Remember, of course, that while this is happening, the reactor is completing kits using the version of the
kitting task constructed to date.

The first relaxation the planner considers is the assumption of quality (AQ). The planner relaxes the
assumption by negating it within its PSC. This means that additional actions may now have to be planned to
accomplish what previously had been assumed. In our example, the FindPart situation is ruled out, and the
planner constructs an alternate FindGoodPart situation, which tests the acquired component to ensure it is of

good quality; bad quality parts are rejected. The first reactor segment generated by the planner in considering
this relaxation is the following:

P23= SITAcquir!Tmy(k) 5

€ REASSERTHndGoodPan(-I 1} Movei trayarea
: (UPDATEAcquir!Tmy.k.xl; SUCCEEDAcqm'rEMy.k) 1:F AILAcqnimT}ay.k)

P24 = SITFindGoodPart(k) 5

(= (Findygy(x1) : Testygy,
* (UPDATEFindGoodParsk,x1} SUCCEEDFindGoodPartk) ) * FAIL findGoodpank)

This segment is a replacement for the AcquireTray situation. Having made the incremental adaptations for

this segment the planner continues to relax the assumptions for the LacksMotor, LacksCap, and LacksBody
situations also.

Relaxing all the assumptions produces a complicated reactor structure. This is partially shown in Fig. 10,
This figure shows the full situation hierarchy when all assumptions are relaxed. The additional situations are
tagged with the assumptions that cause them to be introduced. The comparison of this figure with the previous

one, Fig. 9 emphasizes the advantage of incremental reactor construction: the reactor of Fig. 9 is faster to derive
and implement then that of Fig. 10.

9. Results
9.1. The implementation environment

A Puma-560 robot is the basis of the kitting workcell. The original VAL-based controller is used to control
the manipulator. The Puma is equipped with a four-fingered, 2-DOF pneumatic gripper. The VAL controller
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Fig. 10. Final ideal kitting reactor.

e PAPS | ‘
] [vision  |— GRIPPER GLOBAL ‘
| [SERVER CAMERA CAMERA
2 | [oriprir A
S| [serviR |
>
ROBOT
SERVIR VAL
L RS232
BUS
WINDOW REACTOR PLANNER

SUN SUN

T

Fig. 11. The kitting robot implementation.

is connected by a serial line to one of a set of M68020 processors on a common VMEBUS. This processor
functions as a robot server processor.

The workcell has two cameras: A global camera situated above the workcell, whose view covers the entire
workspace, but consequentially doesn’t yield much detail; and a local camera, embedded in the ‘palm’ of the
gripper, whose view is determined by the position and pose of the gripper, and which can be used to get a
close-up view of an object. The two cameras are connected to a Philips PAPS industrial vision system. This
system is controlled by another of the processors on the common VMEBUS.

The remainder of the cell consists of the worksurface and a conveyer belt on which parts can be introduced
or removed from the worksurface. In the current implementation, the object arrival poses are restricted to lie
within a specified subset of all possible poses. (This restriction is temporary.)

RS system

A subset of the RS model has been implemented as a robot programming language. The RS-L3 programming
environment consists of a YACC/LEX-based parser and a real-time executer. The parser accepts systems of
process definition equations in a computer-keyboard version of the RS syntax. It passes on these parsed

definitions, as they are made, to the real-time executer, which executes them as dictated by the model semantics.
Thus, all execution is interpretive.
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Fig. 12. Graphs of adaptations issued and applied.

A set of basic sensory and motor schemas has been built to interface to the robot and vision servers. These
basic schemas run as atomic processes that send command messages to the servers and return results from

them. For example, Locate,, is a basic sensory process that continually queries the vision server and only
terminates when such a model instance is seen.

Planner-reactor

The reactor is a set of RS processes running on the RS-L3 system. Communication with the planner is
via an ethernet UNIX socket link. The planner can load new process definitions into the system over this
link. Certain basic schemas such as STUB, E, A and so on, use this link to communicate with the remote
planner. :

The planner is implemented in the POPLOG environment. It employs the planning control strategy outlined

in this paper and maintains the link with the reactor using asynchronous signal handling to catch incoming
perceptions.

9.2. Experimental results

The example described in the previous section was implemented and several experimental runs conducted.
Trace statistics were gathered on each run on, e.g., the times when assumption failures were detected, when
adaptations were made, the number of assumptions in use in the reactor, and so on. In each run, the planner
utilized all the kitting assumptions. However, only five of the assumptions were actually relaxed in these trials.
The purpose of these experimental runs was to begin to explore the behavior of a planner-reactor system in
practice. Results from the runs are presented in the following subsections.

9.2.1. Construction of the initial reactor

Adaptations issued and applied

Fig. 12 shows the trace of adaptations issued by the planner for the initial stages of the experimental run:
the incremental construction of the first complete reactor. It takes the planner 26 seconds to issue the first
adaptations. Subsequently, 16 after the first adaptation, the planner has completed all adaptations for that first
complete reactor. The adaptations issued trace (the solid line) indicates the times at which adaptations are
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issued by the planner to RS-L3. An adaptation issued does not necessarily take effect immediately; we discuss
this later. Each adaptation issued is a reactor segment such as those in the examples in Section 8.3. Typically,
a number of such adaptations are necessary to relax an assumption. The trace has a steep slope in periods of
reactor change, and is flat otherwise.

As the safe adaptation procedure incrementally updates the reactor to include each new segment, it makes a
number of discrete changes to the reactor. Each such change is logged as an adaptation applied (the dashed
line in Fig. 12). The constraints involved in safe adaptation can cause a time lag in implementing changes.
Active situations cannot be interrupted — that would leave the reactor in an undefined state — instead the
adaptation waits for the situation to end before applying the changes, in accordance with the theory described
in Section 5.5. In general, the interval between an issued adaptation and an applied adaptation is quite small.
If the situation to be changed is active however, the delay may be longer. Thus, the adaptations applied
trace will lag the adaptations issued trace by a variable amount, e.g., the 2 s lag between the first adaptation
issued and first adaptation applied. There will always be at least one change in reactor structure (adaptation

applied) per reactor segment (adaptation issued), hence the former quickly rises above the latter in the
graph.

Assumptions in use

Fig. 13 is a trace of the number of assumptions in use by the planner and the reactor for this first phase of
the experiment. The planner has initially no assumptions in use. As its goals drag subgoals and actions into
the planner’s PSC, the planner gathers the assumptions associated with those subgoals and actions. The policy
of the planner is to assume that all assumptions hold, unless it actually knows otherwise (from perception
data). The first reactor is in place roughly 28 s after startup, and requires six assumptions (the start of the
solid line in Fig. 13). Even though this reactor is not complete (in the sense that it contains STUB processes),
the kitting robot can now start kitting; its kitting actions are overlapped in time with the further refinement
of its kitting ‘program’. In the process of initial construction of the reactor, the number of assumptions used
by the planner increases gradually. The initial reactor is elaborated over the following 12s until by 40s after
startup the first complete reactor is in place (i.e., the first w-ideal reactor). This reactor employs all nine
assumptions.

The dotted line in Fig. 13 is the trace of assumptions in use by the reactor. Assumptions introduced by the
planner can only come into effect once the safe adaptation procedure allows it. Only then are the new segments
in place that rely on that assumption. For the same reason that there is a time lag between adaptations issued
and adaptations applied, there is a time lag between assumptions used in the planner and assumptions used in
the reactor. In this initial phase of the experiment, the time lags are relatively small, 1-2 seconds.

The planner finished the first working ideal reactor approximately 12 seconds after the first adaptation. This
reactor is capable of repeatedly completing kitting trays as long as the entire set of kitting assumptions hold. In
that 12 seconds, no STUB processes were triggered, indicating that the planner successfully refined the reactor

before any unrefined sections were called on to execute. (This first reactor is the one shown in Fig. 8 in the
previous section.)

9.2.2. Planner-directed relaxation of the reactor

The next set of graphs show the planner relaxing the assumptions used to construct the first complete reactor.
The order of relaxation in this experiment is the prespecified assumption relaxation priority. Consideration of
forced assumption relaxation — when the environment forces the planner to relax an assumption prematurely —
is relegated to the next section. When the planner decides to relax an assumption in its PSC, certain portions of
its plan become invalid and need to be reworked. Fig. 14 shows the trace of assumptions in use by the planner
(solid trace) and reactor (dotted trace) for this second phase of the experimental run.

As soon as the planner finishes an ideal reactor for a given set of assumptions, it chooses the assumption that
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is least likely to hold (of the assumptions in use) for relaxation. For example, in Fig. 14, as soon as the planner
finishes the first ideal reactor (at the leftmost edge of the short ‘plateau’ in the solid trace) it deliberates on
relaxing the assumption of parts quality (AQ). The rightmost edge of the ‘plateau’ is the time that the planner
finished issuing the adaptations necessitated by this relaxation. Thus the length of the plateau is the time taken
for the planner to revise and regenerate the affected segments of the reactor plan (about 6s in this example).
Similarly, the next highest ‘step’ to the right of the plateau describes the relaxation of the next assumption, the
assumption of substitutability (AS), which takes about 30 seconds.

The dotted trace in Fig. 14 is the trace of assumptions used in the reactor. This graph indicates how long
assumptions remained in use. Once the first ideal reactor is constructed, each successive step in the trace
indicates the duration in which successive ideal reactors were active. In the first phase of this run, the trace of
reactor assumptions followed the trace of planner assumptions closely. However, in this second phase, although
the planner has relaxed two assumptions in the period from 40s to 80s, the reactor does not begin to echo
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Fig. 15. Graphs of planner assumptions and adaptations issued and applied.
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Fig. 16. Graphs of reactor assumptions and adaptations issued and applied.

these changes until 103 s. The reactor then finishes both relaxations between 103 s and 104 s. Thus, it has taken
the reactor roughly 60s to complete the necessary changes. These lags and overlaps in operation underscore
the highly asynchronous and independent operation of planner and reactor.

The cause of this delay is again the safe adaptation procedure. The situation is illustrated by the graphs in Fig.
15 and 16: a trace of adaptations issued and applied is superimposed, first on the trace of planner assumptions,
and then on reactor assumptions. The planner’s activity can been seen as clearly defined steps in the trace of
adaptations issued. However, the safe adaptation mechanism causes these changes to become spread out in the
trace of adaptations applied. The interval between 40s and 103 s on the trace of adaptations applied in Fig. 15
indicates there are changes in progress in the reactor throughout this period.

It is important to note again that the Kitting robot is active and producing kits during this process; indeed it
has been active since the first adaptation. The result of assumption relaxation is iterative improvement of the
range of environmental conditions the kitting robot can handle; events that may cause an early ideal reactor to
fail to assemble and thus reject a kit, will cause no problem for later reactors.
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Fig. 17. Graphs of assumptions in use by planner and reactor.

9.2.3. Environment-directed relaxation of the reactor

In constructing a reactor, the planner is not aware of the exact state of affairs in the environment. This is
a consequence of the division of responsibilities between planner and reactor. The reactor is the portion of
the system that directly measures and responds to the environment; the planner is the portion of the system
responsible for global reasoning. Nonetheless, the planner does need to have some information from the
environment. It obtains these perceptions through the reactor.

Especially, the planner needs to know when an assumption that is in use in the reactor does not hold in
the environment: assumption failure signals. Another perception that the planner needs to know is the case
when the reactor is being called upon to execute parts of its code that have not been completely refined by
the planner: stub trigger signals. As we have previously mentioned, although the planner does incorporate all
the kitting assumptions when building a reactor, only the AQ (quality), AS (substitutability), AM (motion)
and ADD (downstream-blocked) were used in these experimental trials. When an assumption failure occurs,
that failure is repeatedly sent to the planner until the planner disables that portion of the reactor via an
adaptation.

To determine whether an assumption holds, the planner needs to provide a condition that the reactor can
measure and report back to the planner. For assumptions such as AQ and ADD, this condition is simply a
monitor for an incoming signal. Downstream automation can be reasonably expected to report a problem with
either of these assumptions to the kitting cell. The condition to invoke substitutability of parts, AS, is that the
cell be starved of a particular object type. However, in our implementation so far, failure of this assumption
is simply a message sent to the workcell. The Motion assumption, AM, is the only one that the kitting robot
actively measures. This assumption is considered to have failed if the kitting robot fails to acquire an object at
the location where vision revealed an object. In the following graphs, AQ and AS have already been relaxed
by the planner, and AM and ADD will be relaxed due to assumption failures signals.

Fig. 17 is a graph of the assumptions in use in reactor and planner for the final phase of this experimental
run. It additionally shows the trace of assumption failure signals received. Intervals of assumption failure are
indicated by a rising slope. The flat regions between these slopes indicate intervals in which one or more
ideal reactors operate successively without assumption problems. Just after 150, the assumption monitor for
the no-motion assumption (AM) begins to signal an assumption failure (triggered by the authors removing
a kitting part just as the robot was ready to close its gripper). The planner responds by relaxing the AM
assumption (solid line) and the reactor quickly follows suit (the dashed line). A second failure and forced
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Fig. 18. Graphs of adaptations, assumptions and assumption fails.

relaxation happens at 215 for the downstream automation assumption (ADD; triggered by a direct signal to
the reactor).

Fig. 18 shows a close up of the traces for adaptations issued and applied, failures, and the assumptions in
use in the reactor, for this third phase of the experimental run. At 152s the AM assumption failure is signaled.
The planner responds very quickly and begins to issue adaptations by 1555, continuing for about 10s. There
is little delay in the safe adaptation procedure and the structural changes to the reactor lag the adaptations
issued by only about 1s. This is also evident from the assumptions trace in Fig. 17. Part of the changes in this
adaptation is to remove the assumption failure monitor for this assumption; thus, partway into the adaptation
(161s) the signals from the assumption monitor cease. The total forced relaxation response time — the time

from failure to final change in the reactor - is roughly 11s. The ADD failure occurs at 215s and proceeds in
a similar fashion.

Reinstating assumptions

In our theoretical analysis in this paper, we did nor address the problem of reasserting previously failed
assumptions. Nonetheless, this is convenient in practice to model operating regimes, and therefore is part of our
objectives. In the experimental run, at time 357 s the ADD assumption was reinstated. On the relaxation of such
reinstatable assumptions, the planner adds a reactor monitor that will signal when the assumption holds again.
(It doesn’t show up as an assumption failure, since it isn’t.) As the trace statistics show, our implementation
does indeed handle the reintroduction of assumptions. However, further theoretical work is necessary to extend
our convergence results to include this case.

The examples in the previous graphs purposely isolate forced relaxation from normal relaxation, and isolate
relaxation of individual assumptions. It is, of course, possible for forced and normal relaxation to be mixed and
for multiple assumptions to be relaxed simultaneously. This kind of mixed behavior is more what we would
expect from an actual factory environment.

Performance improvement

As the planner continues to refine the reactor, the overall kitting robot system should show improving
efficiency and robustness. Ideally, to evaluate an implementation, an empirical measurement that quantifies
performance should be collected for the duration of an experimental run. Unfortunately, in a dynamic and
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Fig. 19. Planner-reactor improvement graph,

uncertain environment, simply because an action may fail, does not mean it will fail in any given trial. Thus,
such a performance measurement must be made over a statistically significant number of trials. Practical
difficulties prohibit us from collecting this number of trials on our PUMA testbed.

An indirect performance improvement measure can be formulated based on assumption use, and used to
illustrate the ongoing improvement. Fig. 19 shows a graph of such a measurement for the same experimental
run described in the previous graphs. The performance measurement is graphed as 1/M versus time, where M
has three components:

e the number of assumptions used in the planner (#SAP) and reactor (#SAR) that also hold in the environ-
ment; 7

e the number of assumptions retracted by the planner (#RAP) and in the reactor (#RAR);

¢ the change in number of assumptions changed in the environment from time ¢ —1 to time ¢ (#AE,_, —#AE,).

Since retractions affect the first component of M as well as the second, its necessary to multiply the second

component by 2 to ‘cancel’ out the effect on the first. The formula for M at time 1 is:

M = (#SAP + #SAR) + 2(#RAP +#RAR) + (#AE,_; — #AE,).

Overall M is bigger for systems that have more supported assumptions and more assumptions retracted — an
improved system. The reciprocal of M is taken to put this measurement in the typical form of a ‘learning

?

curve .

The overall trend in Fig. 19 is clear: the performance improves over time. The initial decrease comes from the
initial construction and then planner-directed assumption relaxation of the reactor. The ‘setback’ in improvement

at times at 152s and 215 s are due to assumption failures. The ‘setback’ at time 357 s is due to the reintroduction
of the ADD assumption.
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10. Conclusions

The results show the feasibility of this approach: an initial working reactor is quickly generated and correctly
generalized over time. External events, such as assumption failures, are handled swiftly with non-affected reactor
segments not being interrupted during the changes required.

Our system, as it stands, has a number of flaws.

(1) We assumed a simple approach to monitoring assumption failures: All failures must be directly observable.
In future work, we plan to tackle the issue of observability in relation to assumption failures. Error recovery
capabilities will be needed to handle non-observable assumptions.

(2) Our formulation of reactor behavior in the case of a reactor in which some assumptions no longer hold
(i.e., while the planner is revising the reactor) has a loophole. We disable any reactions that are based
on invalid assumptions. Doing nothing is not, however, always the right thing to do. Consider a mobile
robot that detects a chasm ahead, but its avoidance reactions have been disabled because they rely on a
faulty assumption. In such cases, it may be necessary not only to disable faulty reactions, but also enable
“default” safety reactions.

(3) The w relaxation strategy is monotonic, and does not take advantage of assumptions that are re-introduced
into the environment. We need to extend our theoretical treatment to model ‘operating regimes’, where
assumptions can be reinstated over time. This will affect the convergence results for assumption relaxation.

Although our solution was driven by the kitting robot problem, the approach is generally applicable. It is

potentially applicable in any domain in which both reaction and deliberation are required: exploration in mobile

robots, emergency response planning, or advanced ‘teleoperation’ in planetary rovers. More specifically, for our
solution to be applicable to a problem domain, the following should hold: First, it must be possible to identify

a set of assumptions that characterize the environment. Second, it must be reasonable to assume that at any

time, a nonempty subset of these assumptions will form a temporary stable operating regime. Problem domains

in which these two don’t hold effectively require the ideal reactor to be in place from startup, and thus present
no advantage to our incremental approach.
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