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ABSTRACT

A mobile robot moving in an environment in which there are other moving objects and active agents, some of which
may represent threats and some of which may represent collaborators, needs to be able to reason about the potential
future behaviors of those objects and agents. In this paper we present an approach to tracking targets with complex
behavior, leveraging a 3D simulation engine to generate predicted imagery and comparing that against real imagery. We
introduce an approach to compare real and simulated imagery and present results using this approach to locate and track
objects with complex behaviors.

In this approach, the salient points in real and imaged images are identified and an affine image transformation that maps
the real scene to the synthetic scene is generated. An image difference operation is developed that ensures that the
matched points in both images produce a zero difference. In this way, synchronization differences are reduced and
content differences enhanced. A number of image pairs are processed and presented to illustrate the approach.

Keywords: Cognitive robotics, robot simulation, synthetic video, motion detection, computer vision.

1. INTRODUCTION

Consider the task of having a robot intercept a ball rolling on the ground (the robot soccer problem). A behavior-based
approach including visual tracking of the ball can yield a robust solution (e.g., [8][10]). However, if we complicate the
problem by considering the ball to be moving towards a wall or another agent then the situation becomes much more
difficult. The dynamics used in tracking a ball typically does not include information about bouncing off walls or other
agents. Although a fast tracking system may reacquire the ball target after the bounce, it certainly will not be able to
predict the bounce. Hence any action that the robot takes before the bounce will be predicated on the ball continuing its
observed path. This puts the robot in the position of always playing ‘catch-up’ with the ball instead of accurately
predicting where the ball will be and moving there. Although we have portrayed this issue in terms of the robot soccer
problem, this same issue arises whenever a robot is operating in a complex dynamic environment, for example, an urban
search and rescue robot moving on a semi-stable pile of rubble.

We introduce an approach to modeling the behavior of a complex, dynamic environment that attempts to maintain the
simplicity of a behavior-based robotics approach. We will exploit a 3D modeling system called OGRE [7], an open-
source rendering engine for building 3D games, for modeling the appearance of objects around the robot. OGRE can be
integrated with ODE (the Open Dynamics Engine) to include the modeling of the physics of objects. Returning to the
robot soccer problem, if a simulated ball is moving towards a simulated wall in an OGRE/ODE simulation, then the
simulation can certainly predict the position of the ball after the bounce. Informally, the simulation can act as the
‘imagination’ of the robot, allowing it to carry out a particular kind of thought experiment: allowing the simulated world
to run faster than the real world for the purposes of prediction. In Section 3 we describe our approach to integrating
simulation and observation by comparing real visual input with the graphical, synthetic video generated by a simulation
to determine how well observations match simulated expectations. We present experimental results in Section 4 for
several different scenes and for different conditions, illustrating how this approach can be used to locate unexpected
objects and the lack of expected objects.

2. LITERATURE REVIEW

The growth of the video game industry has contributed to the ready availability of good 3D simulation environments,
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and a number of projects have involved integrating robot simulation and control environments, e.g., [1][5]. That
approach is focused on providing ready interleaved access to simulation or robot control to a programmer. In contrast,
our use of simulation is as an intrinsic part of the robot control itself, not as an aid to the programmer. In the assembly
and task planning field, the integration of simulation into the reasoning process has been investigated [12]; however, the
integration was achieved by modeling the state of the environment. Our objective is to integrate simulation while
maintaining the generality and robustness of a behavior-based approach, not sharing the simulation state information.

In previous work [2] we have described an approach to this problem based on comparing the visual input of the robot
with imagery generated from a dynamic 3D world model and directing discrepancies to the robot’s SOAR-based
cognitive system. Integration of Video and 3D imagery has been considered in applications such as predictive
teleoperation [3]. Our problem is different in that it requires comparing the synthetic and real imagery to look for
differences between actual and predicted object behavior. Comparing the synthetic imagery from the world model with
imagery from the vision system poses a number of problems [4], including synchronization differences: differences in
the camera poses, in the scene lighting, and in the colors and textures; as well as content differences: differences in the
number and type of object shown and differences in the predicted object behavior. All these issues mean that a simple
difference operation between real and synthetic images is not very effective.

3. COMPARING REAL AND SYNTHETIC SCENES

In this paper, we focus on just the task of comparing real and synthetic video. Figure 1, however, shows the block
diagram of our overall system [3]: The real and synthetic images of the scene as viewed by the robot are compared. If the
scenes are considered the same but from different viewpoints, then the viewpoint of the camera in the simulation is
changed, and the simulation generates an image taken by the camera at the new location. If an unexpected object is seen
in the real image, an object is introduced at the corresponding position in the simulated scene. The region of the real
image responsible for the difference is used as video texture on the object and a new synthetic image generated. The
information on whether there is no difference, an unexpected object, or an object missing between the image pairs is
made available to action planning [2]. This loop of difference detection and simulation modification is used to keep the
simulation synchronized to the observed environment. For prediction purposes, the simulation can be allowed to ‘fast
forward’ in time, so that the expected position, for example, of a target can be calculated and then compared to
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Figure 1: Block diagram of the loop integrating simulation and observation

Fig. 2 shows a real (2(A)) and synthetic (2(B)) view of the same scene taken with the artificial camera at approximately
the same location and orientation as the camera in the real scene.

(A) (B)

Figure 2: Real (A) and synthetic (B) views of the same scene from approximately the same position and orientation
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The view presented here is a close up of one wall of a room. The scene is also modeled graphically using OGRE.
Sections of the graphical scene have been tiled with video texture manually extracted from Fig. 2(A). The use of video
texture should make it easier to directly compare the real image and synthetic image to answer the following questions:

1. Do they represent the same scene from the same viewpoint?

2. Do they represent the same scene from slightly different viewpoints?

3. Do they represent the same scene but with some number of different objects?

4. Do they represent different scenes?

Let I, be the simulated image and /. be the real image. Fig. 3(A) shows the absolute image difference | /- /.| and Fig.
3(B) is a thresholded absolute difference. The images show substantial differences because the real and simulated
camera positions are not identical and errors are introduced by the texture extraction and tiling. However, we would like
to be able to determine that these are views of the same scene, albeit from slightly different camera positions.

(A) (B)
Figure 3: Absolute difference (A) and thresholded difference between real and synthetic images from Fig. 2.

3.1 Alignment of Synthetic and Real Images

If we just consider the camera misalignment issue, we can approximate the registration between the real and synthetic
images by an affine transformation. If p,=(x,, y,) is a point on /; and p,=(x,, y,) is a point on /, then we can say:

pr=Aps+b (1

where 4 is a 2 x 2 rotation matrix and b a translation. If points of correspondence can be established between the real
and synthetic images, then the affine parameters 4 and b can be estimated. Using the efficient corner detection library of
Trajkovic & Hedley [10] corners were labeled in the real and synthetic images (e.g., Fig. 4(A, B) for the scene of Fig. 2).
The RANSAC algorithm [5] was used to estimate the affine parameters 4 and b. Fig 4(C) shows the real image
transformed for registration with the synthetic image, I’, and Fig. 4(D) shows the points used to estimate the transform.

(B)

(D) (E) Q)
Figure 4: Corners detected in real (A) and synthetic (B) scenes, real scene affine warped to synthetic scene (C) using matched points
(D), absolute difference (E) and thresholded difference (F) with warped real and synthetic images.
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The difference operation | /- I’,| is shown in Fig. 4(E) and the thresholded result in Fig. 4(F). Comparing Fig. 3(B) and
Fig. 4(E) it can be seen that some of the sources of the difference error have been resolved but not eliminated. There is
less difference error on the lines and edges on the wall and floor, but the affine registration on its own is not sufficient.

3.2 Calculating the Match-Mediated Difference Mask

The affine transformation brings corresponding objects in the real and synthetic images approximately into registration.
However, there are still differences caused by the quality of the texture mapping or simulated surface color. To address
this, we will make the assumption that the image area around a point used to estimate the affine registration should be
similar in both images. The better two matched points correspond between real and synthetic images, the more we will
assume the two images should be similar.

Let p, and p, be two matched points in the real and synthetic images. We will consider one of the images to be the
primary image and construct the difference image in those image coordinates. In this paper we consider the synthetic
image to be the primary image. Each match point p’ in the set of match points P will be in the image coordinates of the
synthetic image. Its corresponding point in the real image, m(p’), will be given by the affine transform in eq. (1):

m(p’)=Ap’ +b

We will place a normalized Gaussian at each point p” in the set of match points P and sum these over the image to create
an image mask whose values correspond to the proximity of the image pixel to adjacent match points:

(r-p"?

L Le 2v (2)
| P | p'ePSp‘

where S 15 the sum of the Gaussian for p* over the entire image / and v a small, fixed variance parameter:

(1%#’)2

S,=e 3)
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However, this doesn’t account for the fact that some matches are of better quality than others. If p is a point in the set of
match points P, we define the match error e( p ) to be the distance between the two matched points p and m(p) in the
primary image coordinates:

e(p) = p-m(p)|

We define the normalized match quality g(p) to be the inverse of the match error normalized by the sum of all match
eITOIS:

|
9(p)=——"7— “)

peP

Eq. (4) is a measure of the quality of match p with respect to all the other matches, and we use this as a coefficient for
the Gaussians in Eq. (2) to generate the match-mediated difference mask I, :

(r-p)?

a(p)
L,( ,P‘Z - )
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Figure 5(A) shows the match points for the running example superimposed on the absolute difference image| /- I’,|. Fig.
5(B) shows the resultant gray level match-mediated difference mask.

(A) ®) © D)

Figure 5: Absolute difference of warped real and synthetic images with overlaid match points (A) and match mediated difference
mask (B) calculated from (A). Match mediated absolute difference (C) and thresholded difference (D).

To calculate the match-mediated difference image using the match-mediated difference mask eq. (5) we divide each
point in the difference image by the corresponding point in the mask:

|1, (p)—1'.(p)| ©)
1,(p)

1,(p)=

and the result for the running example is shown in Fig. 5(C) and thresholded in Fig. 5(D). (The thresholds used
throughout are the same for all images). The resulting difference image shows only the edge of the common region in the
primary (synthetic) and affine transformed secondary (real) image, allowing us to finally say that both images are of the
same scene from different viewpoints as given by 4 and b from eq. (1).

4. EXPERIMENTS

In this section we show the results of experiments using the match-mediated difference approach to detect whether real
and synthetic images show the same scene, a scene with a new object, or a scene with a missing object. Fig. 6 shows four
pairs of real and synthetic images. The first three pairs attempt to match the same real scene with slightly different views
of the synthetic scene. The first and fourth pair attempt to match the same synthetic scene with slightly different views of
the real scene. In each case, the image pair is shown in columns (A) and (B) overlaid with the corner point results;
column (C) shows the affine transformed real image; column (D) shows the gray-level match-mediated mask; and,
column (D) shows the thresholded match-mediated absolute difference image. In the final column, the only part of the
difference image that is valid is the overlap between the synthetic and affine transformed real image and the boundary is
typically visible.

The first image pair shows the ideal result, the difference image is empty in the overlap region. However, in the
remaining three rows, the image is blank for most of the overlap region, except for the floor. The region of the image
with the most complicated geometric features remains blank because of the math-mediated difference mask. The floor in
the synthetic scene is visually quite different from the floor in the real scene, the result of imperfect manual texture
collection from the real scene and mapping in the simulated scene. However, the image scope of the difference is
sufficiently small (unlike the large areas of difference in Fig 3(B)) that we expect that we will be able to use this to
iteratively refine the texture in the simulated scene and reduce the observed difference via the loop shown in Fig. 1.
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(A) (B) © D) (E)

Figure 6: Examples of the scene in Fig. 2 but with the simulated camera moved: Cols. A and B are the real and synthetic images with
corner points; col. C is the affine transformation image; col. D is the match-mediated mask; and, E the match-mediated difference.

All the examples so far are of image pairs that should produce no difference. To be useful, this approach should preserve
differences that are due to new objects in either real or synthetic image. Our convention is to consider an object in the
real image but not in synthetic image as an unexpected object, and an object in the synthetic image but not the real image
as a missing, expected object. In Fig. 8, the top line shows the same experiment presented as the running example in
Section 3, except a black square has been artificially drawn on the back wall of the real image. The process of

|

(‘: ,||n\ g

) S ® © (D)

Figure 7: Book example images: Cols. A and B are the real and synthetic images with corner points; col. C is the affine transformation
image; col. D is the match-mediated mask; and, E the match-mediated difference.
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estimating the affine transform is the same as for the original experiment. However, since there are no matches on the
black square — as it appears in only one image of the image pair — the match-mediated difference mask contains zero or
small values in the vicinity of this feature (Fig. 8(D)). Hence the feature is preserved when the difference operation (eq.
(6)) is evaluated, showing up clearly in Fig. 8(E).

(A) (B) © D) B

Figure 8: Example of a scene with an expected object missing: object is in synthetic image and not in real image: Cols. A and B are
the real and synthetic images with corner points; col. C is the affine transformation image; col. D is the match-mediated mask; and, E
the match-mediated difference.

The second row of Fig. 8 shows a box introduced into the synthetic scene. The scene was generated by making a
graphical model of a box roughly similar in appearance to the box in Fig. 9(A) and placing on the floor close to the wall
in the 3D Ogre scene model. Because of the proximity of the box to corner features used as match points, the match-
mediated difference mask does partially overlap the region of the image where the box is. Nonetheless, the thresholded
result extracts the majority of the box as a valid difference region. In this case, we would consider this a missing
expected object.

(A) (B) © D) (E)
Figure 9: Example of a scene with an unexpected object - object is not in synthetic image but is in real image: Cols. A and B are the
real and synthetic images with corner points; col. C is the affine transformation image; col. D is the match-mediated mask; and, E the
match-mediated difference.

Figure 9 shows an example of an unexpected object. The corner points on the box contribute minimally to the affine
transform and to the match-mediated difference mask. The thresholded result does indeed show the box against the floor;
however, so much of the floor also shows up that it is difficult to identify the box as an expected but missing object. Our
approach here, as in the last few examples in Fig. 6, is to use the difference region extracted as a mask to extract floor
texture from the video via the loop shown in Fig. 1. With better floor texture, we expect the box to be separable.
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5. SUMMARY

In this paper, we introduced an approach to integrating a 3D simulation system based on OGRE/ODE with the visual
processing module of a robot control system. The objective is to use the simulation system to model complex
phenomena in the environment. The simulation is integrated into the robot control architecture in a novel way so that the
many of the advantages of a behavior based control approach can be maintained; the simulation presents its output as an
alternate visual input — the ‘expected’ visual scene. We present a novel technique, the match-mediated motion
difference, for comparing real and synthetic images that takes into account that the two images may be taken from
different camera viewpoints, may contain some differences in color and texture, and may contain different objects.

The approach works for as long a sufficient number of corner points can be extracted from each image and an affine
transform can be found to match the images. In the case that an affine transformation cannot be found, the images are
considered too different to compare. Another constraint is that any real regions of difference are sufficiently distinct
from the points used to make the affine transform. This constraint may result in the edges of objects being clipped, as for
example in Fig. 8(E) second row.

All the examples here started with a manual extraction of texture for the simulation. A major avenue of future work will
investigate the automation of the loop in Fig. 1 for updating the simulation by extracting texture from regions identified
as difference regions. For example, the floor in Fig. 9(E) would be identified as a difference, the difference region used
as a mask to extract texture from the real video, and the texture added in to the simulation. This loop should converge by
incremental identification of differences, extraction of texture, and updated of simulation model to a zero difference
image.
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