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Abstract 
We address the problem of sensor fusion for stereo 

and ultrasound depth measurements for map building 

for a robot operating in a cluttered environment. In 

such a situation it’s difficult to make useful and 

realistic assumptions about the sensor or 

environment statistics. Combinatorial Fusion 

Analysis is used to develop an approach to fusion 

with unknown sensor and environment statistics. A 

metric is proposed that shows when fusion from a set 

of fusion alternatives will produce a more accurate 

estimation of depth than either sonar or stereo alone 

and when not. The metric consists of two criteria: (a) 

the performance ratio PR(A,B) between sensors A 

and B, and (b) the diversity d(A,B) between A and B 

as captured by the rank-score function fA and fB. 

Experimental results are reported to illustrate that 

these two CFA criteria are viable predictors to 

distinguish between positive cases (the combined 

system performs better than or equal to the individual 

systems) and negative cases. 

 

1. Introduction 
An important first step in the process of 

mapping and navigation for a mobile robot is 

extracting information from sensors about the 

physical environment surrounding the robot. A key 

advantage to equipping a mobile robot with a diverse 

set of sensors is that one kind of sensor may provide 

information not available from other kinds of sensor. 

For example, a stereo camera based depth sensor may 

work well in regions of high visual texture. However, 

if that visual texture arises from multiple overlapping 

surface edges, the angle of those edges may impair 

depth estimation by a sonar sensor. To leverage this 

advantage, a sensor fusion algorithm needs to be 

developed that takes the information from each sensor 

and fuses it in such a fashion that the result is at least 

as good, in terms of accurately measuring the 

environment, as each sensor.  

Sensor fusion for robot mapping is a topic 

that has received attention in the research literature 

[3][5][7][24][26][28]. Our work here falls into what 

is typically regarded as low-level fusion [15]. If the 

statistics of the sensor and environment are known, 

then they can be used to construct a Kalman Filter or 

Extended Kalman Filter (EKF) formulation for this 

problem. Neira et al. [24] describe an EKF based 

approach for fusing range and intensity information 

from a laser ranging device for robot localization. 

Arras and Tomatis [1] use an EKF for fusing edge 

information from laser ranging and monocular vision.  

For sensors that have significantly different 

principles of operation and for cluttered, complicated 

environments, it is difficult to model the statistics of 

sensor and environment in a useful fashion [14]. One 

approach is to use empirically determined rules to 

fuse sensors. For example, Duffy et al. [6] use sonar 

to detect features and then use monocular vision to 

extract more information about the features.  Another 

approach is to explore the limits of fusion with 

unknown sensor and environment statistics. For 

example, Rao [26] addresses the problem of how well 

sensor probability distributions can be characterized 

if a finite number of calibration samples, pairs of 

sensed versus actual features, can be taken before 

fusion begins.  

In previous work on target tracking of people in 

surveillance video, we have proposed an approach to 

fusion with unknown statistics using Combinatorial 

Fusion Analysis (CFA) [10],[12],[9],[21]. That 

approach, based on the work of Hsu, Shapiro and 

Taksa [11], characterizes the scoring behaviour, the 

relationship between the scores assigned by an expert 

(e.g., a classifier, a filter, etc.) to a list of candidates 

and the ranks of the candidates. In [9], we 

investigated the problem of tracking on a single 

camera, using multiple feature cue information, in 

situations where targets engage in multiple mutual 

occlusions. Investigating a set of fusion operations 

between ranked and scored lists generated by 

measuring color, shape and position target 

information in the video image, we showed that it was 

possible to develop a metric that predicted, in the 

absence of any statistics on the sensors and 

environments, which fusion operation would perform 

most accurately. 

In this paper we determine whether the same 

criteria can be applied to the problem of fusing stereo 

information with ultrasound ranging to generate depth 

information necessary for applications such as 



mapping and localization. We collect depth 

information from two ultrasound sensors and a 

movable stereo camera as a mobile robot traverses a 

path in front of complicated environment. By 

complicated, we mean the environment consists of a 

cluttered scene with surfaces difficult for stereo or 

sonar or both. A scored and ranked list of depth 

estimates is collected from each sensor for each 

measurement. In this paper, we adopt the frequency of 

measurement of a depth value over a spatial range, or 

over a time interval, as the score for that value. (If 

only the top ranked value is used, then this 

corresponds to a median filter.) We evaluate a set of 

fusion operations of the stereo and sonar data with 

respect to ground truth. We also evaluate for each 

fusion operation the CFA criteria developed in 

[9][13], namely, a feature performance ratio metric 

PR(A,B) for features A and B, and a feature rank/score 

diversity metric d(fA,fB ). We show that, in the absence 

of any assumptions about the statistics of sensors or 

environments, or any calibration sampling, these two 

features can be used to predict when fusion will 

produce a more accurate depth measurement and 

when not.  

 

2.  Combinatorial Fusion Analysis 

Our principal tool in identifying which features or 

pieces of evidence are most useful is the emerging 

field of CFA ([8]-[11], [19], [23], [24], [30]). The use 

of CFA has at least three distinct characteristics which 

are clearly advantages over the existing data and 

information fusion approaches (see e.g., [3], 

[27][29]). CFA considers: (A) both score and rank 

function for each feature/evidence and explores the 

interaction between the two functions using the rank-

score function, (B) for a set of multiple scoring 

systems, both combinatorial possibility and 

computational efficiency of combining multiple 

scoring systems, and (C) fusion at both the data and 

decision levels, where (1) at the data level the 

multiple scoring systems are determined by sensors or 

characterized by features, and (2) at the decision 

level, a variety of scoring systems are obtained by 

different methods such as probability, statistics, 

analysis, combinatorics and computation.  In our 

project, we (a) explore the scoring behavior of each 

of the features/evidence, (b) adopt CFA to inspect and 

analyse the space of possible combinations of the 

features or evidence, (c) use the difference between 

the two rank/score functions d(fA,fB) to characterize 

the diversity between A and B, and (d) use the 

rank/score function fA to represent the scoring 

behavior of a feature or piece of evidence A.   

We consider each feature measured by a 

sensor (which may measure multiple features) or 

each piece of the evidence reported by a multiple 

sensor system as a scoring system for the depth of a 

surface in the environment. Let D = {d1, d2,...,dn} be 

the set of depth estimates. Let sA(x) be the scoring 

function which assigns a real number to each di in D. 

We view the function sA(x) as the score function with 

respect to the scoring system (feature/evidence) A 

from D to R (the set of real numbers). When treating 

sA(x) as an array of real numbers, it would lead to a 

rank function rA(x) after sorting the sA(x) array into 

descending order and assigning a rank (a positive 

natural number) to each of the di in D. The resulting 

rank function rA(x)is a function from D to 

N={1,2,…,n} (we note that |D|=n). 

In order to properly compare and correctly 

combine score functions from multiple scoring 

systems (multiple features for a single sensor, or 

multiple items of evidence from multiple sensors) 

normalization is needed. We simply adopt the 

following transformation from sA(x):D→R to 

s*A(x):D→[0,1] where s*A(x) = 

minmax
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D and smax= max{ sA(x)| x ∈ D} and  

smin= min{ sA(x)| x ∈ D}. 

 Given m scoring systems Ai, i=1,2,…,m, with 

score functions )(xs
iA  and rank function )(xr

iA , 

there exist several different ways of combining the 

output of the scoring systems, including score 

combination, rank combination, voting, average 

combination and weighted combination. Initially we 

will use the average rank (or score) combination as 

follows. For the m scoring systems Ai with )(xs
iA  

and )(xr
iA , we define the score functions sR and sS of 

the rank combination (RC) and score combination 

(SC) respectively as: 
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As we did before, sR(x) and sS(x) are then sorted into 

ascending and descending order to obtain the rank 

function of the rank combination rR(x) and the score 

combination rR(x), respectively. 

 When m scoring systems (features or evidence) 

Ai, i=1,2,…,m, together with the score function 

)(xs
iA  and rank function )(xr

iA  are used, 

combinatorially there are 2
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possible combinations for these m scoring systems 

using either rank or score functions. The order of 

complexity is exponential and becomes prohibitive 

when m is large. The study of multiple scoring 

systems on large data sets D involves sophisticated 



mathematical, statistical, and computational 

approaches and techniques (see e.g., [9] and refs). For 

example, each of the rank functions of the scoring 

system Ai i=1,2,…,m, on D, |D|=n, can be mapped to 

a point in the n-dimensional polyhedra called the 

rank space. The n-dimensional polyhedron Qn is also 

a Cayley graph with the symmetric group Sn as the 

vertex set and the adjacency between vertices is 

defined by a set of generators (a subset of 

permutations) acting on its vertices.  

 

Remark 1: Previous work using CFA ([8][9], [11], 

[13], [19],[24],[30]) in various application areas have 

demonstrated that: (1) the combination of multiple 

scoring systems (features or evidence) would improve 

the prediction or classification accuracy rate only if 

(a) each of the scoring systems has a relatively good 

performance, and (b) the individual scoring systems 

are distinctive (or diversified), and (2) rank 

combinations perform better than score combinations 

under conditions (a) and (b) and other restrictions.  

 

Remark 2: The diversity d(A,B) (dissimilarity or 

difference) between A and B has been studied using 

the score functions d(sA,sB) and rank functions d(rA,rB) 

as correlation and rank correlation respectively.  The 

approach of the current proposal, following the 

practice of [9], [11], [13], [30], [30], is to also use the 

concept of the rank/score function to measure the 

diversity between A and B. That is, we include 

d(fA,fB) as defined in formula (2) below in addition to 

d(sA,sB) and d(rA,rB), where fA, fB are the rank/score 

functions of A and B respectively.  The inclusion of 

d(fA,fB) in the measurement of the diversity between 

scoring systems A and B is one of the novelties of our 

approach. 

When plotting the graph of the rank/score 

function (hence it is called the rank/score graph) of 

scoring systems A and B on the same coordinate 

plane, the diversity measure can be easily visualized.  

Different diversity measurements have been 

considered in other application domains ([1], [5]-[9], 

[12], [13], [19], [24], [30]). 

 Let sA(x) and rA(x) be the score function and the 

rank function of the scoring system A. The rank/score 

function fA(x) : N→[0,1] is defined as: 

fA(i) = ))(())(( 1*1*
irsirs AAAA

−−

=o  (2) 

We note that the set N is different from the set D 

which is the set of n depth estimates. The set N is 

used as the index set for the rank function value. The 

rank/score function so defined signifies the scoring 

(or ranking) behavior of the scoring system and is 

independent of depth estimates under consideration. 

Again, the diversity measure d(A,B)=d(fA,fB )can be 

defined in several different fashions. Here we use the 

following: 

d(fA,fB)= 
2

1
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3.  Experimental Investigation 

3.1 Design of Experiment 

The objective in this experiment is to determine 

whether the diversity criterion for selecting fusion 

operations previously studied in video target tracking 

[13] can be of value in fusion of depth information 

from stereo vision and ultrasound sensors. The 

experimental setup is shown in Figure 1 (a-c). Figure 

1(a) shows a sketch of the plan view of the 

experiment. Figure 1(b) shows a photograph of the 

robot and 1(c) a photograph of the surface whose 

depth is to be estimated. 

 
The robot is driven along a straight line roughly 

parallel to the surface. The surface was chosen so that 

it offers multiple overlapping objects, whose position 

or appearance provide challenges to sonar (angled 

surfaces) and to stereo (non-textured surfaces) or to 

both.  Sonar and stereo dept measurements are made 

at 24 locations along a 1.3m long path. Ground truth 

is measured by hand from the sonar sensors to the 

surface at each location. 

A ranked list of depth measurements is obtained 

from sonar and from stereo camera sensors 

(implementation details in next section). The 

performance P of a sensor measurement or fused 

sensor measurements is calculated as the sum of the 

squared error of the measurement with respect to 

ground truth for the first q  measurements in the list.  

Two fusion alternatives were evaluated, an 

average score fusion and an average rank fusion, as 

described in formula (1). The fusion results are 

divided into positive and negative cases. A combined 

system C that uses sensors A and B is positive if the 

performance of C is better than the performance of A 

and the performance of B, i.e.: 

P(C) ≥  max( P(A), P(B) )  

Figure 1: Experimental Setup 
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For each combination, two performance metrics 

are evaluated. The rank-score diversity, calculated for 

a combination of features A and B as  

d(fA,fB)= 
2

1

))()(( ifif B

n

i

A −∑
=

 

and the performance ratio metric, PR(A,B), calculated 

as:  

))(),(max(

))(),(min(
),(

BPAP

BPAP
BAPR = . 

On each step, for each combination, the value of 

d(fA,fB), PR(A,B),and whether the combination was 

positive or negative was recorded to a log file. 

 3.2 Implementation 
The robot used for these 

experiments was a Pioneer AT3 

robot, equipped with 16 

ultrasound sensors and a Videre 

Design firewire stereo camera 

mounted on a Biclops pan-tilt  

base. 

The SRI Small Vision [17] 

system was used to generate 

stereo depth maps.  These points 

ps were translated to a robot-

centered coordinate system by: 

 

                 p = ps Tc Rb 

 

where Tc is the coordinate 

transformation matrix between 

the camera and robot systems 

with the pan-tilt in home 

position, and Rb is the pan-tilt 

rotation matrix. Sonar range data 

is read using the Aria software 

[25] and also translated to robot-

centered coordinates. 

 

p = pu,n Tu,n 

 

where Tu,n is the transformation for ultrasound sensor 

n. A cylinder Cn is identified for each sonar in the 

robot-centered frame, a fixed radius rn around a line 

that is the central axis of the sonar. Whenever a sonar 

measurement is made with sonar n then Cn is used to 

determine which points from the stereo depth map 

correspond with the sonar reading. Cn was calculated 

by hand for each sonar and refined using a sequence 

of calibration experiments. 

 The following procedure was used to generate a 

ranked list of depth estimates from sonar and stereo: 
 

(a) Sonar: A sequence of 100 sonar measurements 

was made for each of two sonar sensors facing 

the experimental surface. A (temporal) 

histogram was made from these values and 

used to produce a ranked list, where the score 

of each value is its frequency.  

(b) Stereo: The set of depth values associated with 

each sonar sensor was collected into a (spatial) 

histogram, and these values used to produce a 

ranked list, where the score of each value is, 

again, its frequency. 

The 24 measurements were made for each of the two 

ultrasound sensors, and associated stereo depth 

measurements were collected, resulting in 48 ranked 

lists. Average score and average rank fusions for each 

associated stereo and sonar list pair were calculated. 

In the case where a depth measurement value 

occurred in both lists, the fusion was straightforward. 

In the case where a value occurred in one list but not 

the other (as happens in many cases), a common 

ranked list was made by normalizing the scores in 

each list, merging the lists and re-ranking the merged 

list. The fusion score was calculated using the rank of 

the depth value in the original list and the merged list. 

 There are four scoring systems in this 

implementation: two sonar scoring systems and two 

stereo scoring systems. Each sonar system is paired 

with a stereo system. In fact all the stereo information 

is measured from a single stereo head positioned 

differently for each sonar so as to observe the portion 

of the environment sensed by the sonar. 
 

3.3 Results 

Figure 2 shows raw data from the sensors 

overlayed on ground truth. The highest ranked depth 

measurement for sonar and for stereo is shown for 

each of the 24 measurements and for each of the two 
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Figure 2: Ground truth information overlayed with sonar and stereo 

depth top-ranked measurements. 



sonars. The horizontal measurements correspond to 

the measurement number (from 1 to 24) which 

corresponds closely to the distance travelled by the 

robot parallel to the experimental surface. Sonar 1 is 

closer to the front of the vehicle than sonar 2. Thus 

the suface dip shown at positions 5 and 6 for Sonar 1, 

appear in positions 11 and 12 for Sonar 2.  Notice 

that for Sonar 1, the measurements from position 18 

onwards display large error with respect to ground 

truth. For the stereo head turned to sonar 1’s field of 

view, the stereo information from position 19 

onwards also shows error.  

The results of the combinatorial fusion analysis 

are shown in the scatter graph shown in Figure 3. 

Looking at the graph, it can be seen that the negative 

combinations, the combinations for which the 

performance of the combination, its closeness ground 

truth depth, is worse than the performance of at least 

one of the combined features, cluster in the lower left 

of the graph. That is, in the area of low relative 

performance and low diversity. The positive 

combinations are more evenly scattered through the 

space, and cluster at a higher relative performance 

and diversity than the negative combinations. This 

result is very close to what we observed in a more 

comprehensive experiment for video target tracking 

[13], and indicates that this approach has value also 

for selecting feature fusion alternatives in robot 

mapping applications. 
 

4.  Conclusion 

In this paper, we have applied Combinatorial 

Fusion Analysis to the problem of fusing depth 

information from a stereo camera and an ultrasound 

sensor that are operating in a complex environment. 

We make no assumption about the statistics 

associated with the sensors or with the environment, 

and we do not take any sample measurements to 

attempt to estimate these statistics. Instead, we look at 

the scoring behaviour of the sensors, and show that a 

metric composed of a performance and a diversity 

component can be used to predict the performance of 

fusion operations. 

The negative examples in Figure 3 cluster well in 

the area of low diversity and performance, however, 

the positive values are widely spread. This may be 

due to several issues: 

(1) The registration between sonar and stereo is 

modelled as a cylinder around the sonar axis. 

In fact, this is a cone. 

(2) The sonar range information produced lists 

of small length, due most likely to pre-

filtering and smoothing within the Aria 

software [25]. 

(3) Despite the technique for addressing the lack 

of common depth estimates in sonar and 

stereo lists still resulted in few common 

values. 

Future work includes addressing these three 

potential causes of error. 
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