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Abstract 

Video target tracking is the process of estimating the current state, and predicting the future state 

of a target from a sequence of video sensor measurements. Multitarget video tracking is complicated by the 

fact that targets can occlude one another, affecting video feature measurements in a highly non-linear and 

difficult to model fashion. In this paper, we apply a multisensory fusion approach to the problem of 

multitarget video tracking with occlusion. The approach is based on a data-driven method (CFA) to 

selecting the features and fusion operations that improve a performance criterion.  

Each sensory cue is treated as a scoring system.  Scoring behavior is characterized by a rank-

score function. A diversity measure, based on the variation in rank-score functions, is used to dynamically 

select the scoring systems and fusion operations that produce the best tracking performance. The 

relationship between the diversity measure and the tracking accuracy of two fusion operations, a linear 

score combination and an average rank combination, is evaluated on a set of twelve video sequences. 

These results demonstrate that using the rank-score characteristic as a diversity measure is an effective 

method to dynamically select scoring systems and fusion operations that improve the performance of 

multitarget video tracking with occlusions. 

 

1. Introduction 
Automated tracking of targets in video has a number of applications, including automated 

surveillance, robotics and virtual reality, amongst others. However, it remains a difficult problem, 

especially when handling video with multiple targets and crowded scenes [13]. For example, a video 

camera looking at an airport lobby or a busy city intersection will have exactly this kind of scene, and this 

motivates our interest in finding an approach to tracking that works well in such cases.  

A video image can be a very rich source of information about a target: image position, image 

velocity, color properties, shape properties and so forth. Fusing these multiple sources of information is 

an appealing way to make tracking more robust [41]. Existing approaches to sensory fusion for video 

tracking have tended to fall into one of three categories: statistical approaches, physical modeling 

approaches and heuristic approaches. In this paper based on our previous work ([15]-[17][24]), we 

propose a new approach using Combinatorial Fusion Analysis (CFA) (Hsu, Chung and Kristal [14]) 

which has been applied to other fields such as information retrieval, pattern recognition, virtual screening 

and drug discovery, and protein structure prediction (see for example, [12] [17]-[18] [22] [26] [28] [43]). 

This approach is bottom-up and data-driven. It develops methods and criteria for dynamically selecting 

feature subsets and fusion operations that improve a performance measure. Because this approach does 

not make assumptions about what targets can and cannot do, it can be applied successfully to situations 
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such as video tracking with multiple mutual target occlusions where it is difficult to formulate a 

computationally efficient physical or statistical model. 

Section 2 is a review of related literature. Section 3 presents our framework for combining 

multiple scoring systems. In Section 4, we motivate the importance of this approach for tracking with 

multiple mutual target occlusions in the process of target hypothesis pruning and feature selection. 

Experimental results are reported in Section 5. Twelve video sequences containing a variety of tracking 

situations form the basis of the experiments. Section 6 presents conclusions and Section 7 discusses future 

plans. 

 

2. Related Work 
Previous work in fusion for multisensory video tracking can be divided into three categories [25]: 

statistical, physical and heuristic. The first, and arguably the largest, category represents sensory 

measurements as random variables whose probability density functions can be characterized and used to 

define a sensory fusion operation. The target tracking community has developed a number of such elegant 

approaches [1]. The Kalman filter is an example of one of the earliest developed approaches, where the 

sensor measurement noise is a random variable characterized by a zero-mean Gaussian distribution. 

Reid’s Multiple Hypothesis Tracking (MHT) algorithm [33] extends this approach to handle multitarget 

point tracking (e.g., radar targets), and Cox and Hingorani [5] reported an efficient implementation of this 

for tracking video corner features. However, video tracking rarely meets assumptions of Gaussian zero-

mean noise. Sharma [37] developed a general Bayesian framework for fusion, presenting Maximum 

Likelihood (ML) and Maximum A Posteriori (MAP) formulations. In general, in a Bayesian approach, it 

is assumed that the different feature measurements are conditionally independent, and therefore that the 

conditional probability of an estimated quantity S given a collection of image data I can be expressed 

using Bayes rule. In the standard framework for linear estimation, this gives rise to an estimate for S that 

is a linear combination of the cue measurements where the combination coefficients are inversely 

proportional to the variance. 
Rasmussen and Hager [32] build on another target-tracking algorithm, the Joint Probability 

Density Association Filter (JPDAF) which uses multiple visual cues to track multi-part objects. They 

develop a Joint Likelihood Filter (JLF), an extension of JPDAF to the multisensory case, where a joint 

likelihood is a product of component feature likelihoods in conjunction with a relative depth mask. The 

depth mask addresses the problem of target occlusion and its non-linear effect on feature measurements. 

Borghys et al. [3] use logistic regression to find parameters for the conditional probabilities of a target 

given a set of (texture) feature measurements. These parameters are then used as weights in a linear 

combination to yield a fused feature estimate. 

 The second category of work considers that if the image generation process can be modeled in 

sufficient detail, then this physical model can be used to determine how sensory measurements should be 

fused. Nandhakumar and Aggarwal [25] use a physics-based modeling approach to develop fusion 

formula for infrared, optical and sonar measurements. The feature measurements are combined, often in a 

non-linear fashion, to produce meaningful physical measurements that can be used to recognize objects.  

 The final category of work is the heuristic category. The fusion of data in this case is based on a 

proposed heuristic measurement, derived from a pragmatic appreciation of the nature of the problem. 

Checka and Wilson [4] adopt an approach to the fusion of audio and video information for tracking in 

which the video information is used to coarsely localize the person, and the audio information is then 

used to derive a more accurate localization.  Loy et al. [23] use a particle filter approach to represent 

multiple target hypotheses. To fuse their multiple visual cues, they employ a weighted sum of cue 

measurements, where each cue is weighted by a reliability coefficient that measures how closely the PDF 

of each cue has approximated the fused PDF. (The reliability is also used to allocate computational 

resources across cues.) Snidaro et al. [38] use an appearance ratio (AR) to determine the reliability of a 

sensor. The AR value is used to weight the position estimates from a sensor. Triesch and von der 

Malsburgh [39] again define fusion as a weighted sum of local cue measurement, where each cue estimate 
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is weighted by a reliability coefficient. The 

dynamics of the reliability coefficients are phrased 

generally, and lead to a majority consensus style of 

fusion.  

 The statistical and physical modeling 

approaches both rely on being able to correctly and 

efficiently model the relationship between feature 

measurements and target state. However, when one 

or more targets engage in repeated mutual 

occlusions, the relationship between targets and 

feature measurements can become highly non-

linear and very difficult to model. The heuristic 

approaches sidestep this problem by adopting an 

approximate, rather than exact statistical or physical 

model. The disadvantage is, however, that there is 

no guarantee of performance. 

 An alternate approach is to estimate a 

statistical or physical model from a collection of 

sensor and associated ground truth measurements. 

Rao [30][31] assumes that the output of each sensor 

is related to the actual feature values by an 

unknown probability distribution. A sample of 

independent and identically distributed pairs of 

actual feature values and sensor outputs for each 

value is collected, and Rao addresses how to use 

this information to select a fusion rule from a 

collection that performs within a specified bound of 

the best fusion rule from the collection. He shows that this bound is related to the length of the sample 

and develops a polynomial time algorithm to estimate a best fusion rule. 

 More recently in [15][17][24], the authors have proposed and studied a dynamic and efficient 

approach to fusion for multitarget tracking in CCTV surveillance (called RAF – Rank and Fuse). 

Experimental results were obtained to illustrate the use of the RAF approach, explaining the advantage of 

rank versus score combinations of features for each target.  

The work in this paper uses the framework of combining multiple scoring systems, Combinatorial 

Fusion Analysis (CFA), and the rank-score function (Hsu, Chung and Kristal [14] and Hsu and Taksa 

[19]) as a measure of diversity between scoring systems. This is different from previous statistical or 

physical modeling approaches. It has several distinct characteristics that distinguish it from existing 

fusion methods (see e.g., [6] [41]-[42]). It is bottom-up and does not impose a model on the 

measurements. The multiple scoring systems represent different sensory cues, features, or combinations 

of cues and/or features. In this paper, we consider: (a) both score and rank function for each feature or 

piece of evidence to be combined, and explore the interaction between the two functions by calculating 

the rank-score function, and (b) the rank-score function as a measure of diversity between scoring 

characteristics to select a best fusion operation. We use ground-truth information to validate the approach. 

 

3. Combination of Multiple Scoring Systems 

We have proposed a multiple hypothesis framework for implementing and evaluating a variety of 

feature fusion operations, including score and rank fusion combinations, for video tracking applications 

[17] and [24]. In this paper, we enhance and update that framework and use it as a basis for our 

experimentation. The framework is shown in Figs. 3.1 and 3.2. Video information is preprocessed to 

extract foreground regions and then channeled to one or more tracking modules, M1,...,Mm. Each module, 

M1 M2 Mm 

C1 C2 Cm          
 

Select & Implement 

Fusion 

Hypothesis pool, D 

 

Identify Foreground 

Regions 

Video 

When |D|>N 

Prune  

Hypothesis Pool 

Figure 3.1:  Flow diagram 
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Mk, uses the video information to produce a set of track lists for each target j, Ckj. The modules may 

employ different sensory cues, features, combinations of features and/or different association approaches 

to produce the target list. We consider each tracker as a scoring system on the set of target track 

hypotheses.  

 Each target list Ck is a list of the hypothesized tracks, for each of the 1,…, p targets, produced by 

module Mj given the previous set of track hypotheses and the current video segmentation, Ck = 
p

j

kjC
1

. 

The number of targets, p, may vary as tracking proceeds, and the multiple hypothesis tacking approach 

handles target track initiation and termination. Each track hypothesis includes a score value that captures 

how well the track matches the target from the perspective of the information and approach used by the 

tracking module. The hypothesis pool D is the union of all the track lists for each target, a set of track 

hypotheses for each target labeled with scores from each of the tracking modules, D = 
m

k

kC
1

. 

The data space of module scores and track hypothesis for each target, for each video frame, is 

shown in Fig. 3.2. The hypothesis pool is allowed to grow until it reaches a threshold size N, at which 

point fusion is performed. The fusion operation is shown in the target data space cube shown in Fig. 3.2. 

The selection and implementation of the fusion operations in CFA(Fi) will be dealt with in more detail 

below. The fused target list C
*
 is then pruned to the q best ranked candidate tracks for each target, and the 

lower ranked candidates are discarded.  

3.1 Score and Rank Functions of a Scoring System Module. 

For two integers, a and b where a  b, we write [a, b] for the set of all integers x, a  x  b. Let Dj 

= {d1,...,dn}  D be the track hypotheses in the pool of n track hypotheses for target j [1, p] generated 

by the collection of scoring systems. We will assume that each module operates on the same pool of track 

hypotheses. This could be by use of a common hypothesis generation stage [24], as in our case, or by the 

generation of a set of composite tracks [27]. 

The score function skj(d) assigns a real number to each d in Dj which is the score given by the 

tracking module Mk to the candidates for target j. When treating skj(d) as an array of real numbers, it 

Targets 

           tp 

    t1 

Figure 3.2: Combination of multiple scoring systems 

where dh, h[1, n] are track hypotheses; Ck, k[1, m] and  

tj, j[1, p], are scoring module k and target j respectively. 
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would lead to a rank function rkj(d) after sorting the skj(d) array into descending order and assigning a rank 

(a positive natural number) to each of the d in Dj. The resulting rank function rkj(d)is a function from Dj to 

N=[1, n]  (we note that | Dj |=n). There is a monotonic relationship: 

[ skj(d1) > skj (d2) ]  [ rkj (d1) < rkj (d2) ] 

There is ambiguity when two track hypotheses have the same score. To resolve this, we add the constraint: 

[ (skj (di1) = skj (di2) )    (i1 < i2) ]  [ rkj (di1)  <  rkj (di2)]  

Fig. 3.2 shows the feature fusion selection and implementation process in more detail. The target 

track list from module k [1, m] for target j [1, p], containing both rank and score information, is 

written Ckj. The feature selection process determines which subset of the m target track lists to use in 

fusion for target j. The fusion selection process determines which fusion operation to use to combine the 

selected features for target j.  The output of the fusion framework is a fused target track list Cj
*
 containing 

the top q candidates for each target.  

Normalization is needed to properly compare and correctly combine score functions from 

multiple scoring systems. We adopt the following transformation from skj(d):DR to s*kj(d):D[0,1] 

where 

s*kj(d) = 
minmax

min)(

ss

sdskj




, d  D and smax=max{ skj(d)| d  D} and smin=min{ skj(d)| d  D}. 

 

3.2. Rank and Score Combinations 

Given m scoring systems for a target j with score functions )(dskj  and rank functions )(drkj  and 

k [1, m], there exist several different ways of combining the output of the scoring systems, including 

score combination, rank combination, voting, average combination and weighted combination. For the m 

scoring systems with )(dskj  and )(drkj , we define the score functions sR and sS of the rank combination 

(RC) and score combination (SC) respectively as:  

sR(d) =  


m

k

kjk drw
1

)( ,  and    sS(d) =  


m

k

kjkj dsv
1

)( . 

As we did before, sR(d) and sS(d) are sorted into ascending and descending order to obtain the rank 

function of the rank combination rR(d) and the score combination rS(d), respectively. For this paper, we 

will define wk= m
1  and vk=


m

kj

kj

1 2

2

1

1




 where kj

2
 is the variance of k js . That is, the rank combination is 

an average rank combination, and the score combination is a Mahalanobis combination.  

We will adopt these two fusion rules as examples of linear combination and of rank combination 

rules. These two classes have been discussed widely in the literature to understand relative strengths and 

weaknesses: For example, Kittler and Alkoot [20] characterizes when a Vote combination outperforms a 

Sum in terms of the estimation error. Melnik, Vardi and Zhang [26] studies several rank-based 

combinations in a unifying framework. We adopt a Mahalanobis combination, rather than a general linear 

sum (weighted average), because of its relationship to the Bayesian formulation and its widespread use in 

tracking. We select average rank combination as a representative of rank-based rules such as voting, max, 

min etc. Rao [30] defines a metafuser as a fusion rule that combines the complementary performance of 

two kinds of fusion rules to produce a better performing fusion rule. Our objective will be to develop a 

rule to select for each target and video frame which of these two fusions will best improve tracking 

performance. 

 When m scoring systems, k [1, m], together with the score functions )(dskj  and rank functions 
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)(drkj
 are used, combinatorially there are 2

m
-1 (   










m

k k

m

1
) possible combinations for these m scoring 

systems using either rank or score functions. The order of complexity is exponential and becomes 

prohibitive when m is large. The study of multiple scoring systems on large data sets D involves 

sophisticated mathematical, statistical, and computational approaches and techniques (see [14] and refs).  

 

3.3. The Rank-Score Graph of a Scoring System Module 
Hsu and Taksa [19] characterize the relationship that an expert habitually produces between score 

and rank as the rank-score functions and the graph of that function as the rank-score graph (Fig. 3.3); the 

graph of a monotonic function f that relates the rank and score of a set of candidates. Let s : D  R, 

where s(d) is the score of candidate d in the set of candidates D. Let r : D  N, where r(d) is the rank of 

candidate d when the candidates are ordered according to their score. Then, the rank-score function f is 

the composite of s and r defined as f : N  R, where 

f(i) = ( s o r 
-1

)(i) = s(r 
-1

(i)). 

  A rank-score graph has to be monotonic non-increasing. However, the shape of the graph can be 

different for different experts and is a characteristic of that expert’s approach. An expert who assigns 

scores in a linearly decreasing fashion will have a linear rank-score graph (e.g., Fig. 3.3 (f2)). An expert 

who habitually assigns high scores to a large subset of its top ranked candidates will have a graph that is 

not a straight line, but has a low slope for the top ranked candidates and a higher slope for the remainder. 

The concave-down graph f 3 in Fig. 3.3 is an example of this. A third kind of scoring behavior is 

exemplified by f1 in Fig 3.3. In this case, the expert habitually gives higher scores to a small subset of its 

top ranked candidates and much lower scores to the rest. 

Hsu and Taksa [19] indicate that a diversity measure based on the rank-score graph can be used to 

determine whether a score or rank fusion will produce a better result (see also [21] for other diversity 

measures). Hsu and colleagues ([15][19][22][43]) have used the new paradigm for diversity 

measurements between two scoring systems in a variety of applications. When the rank-score graphs of 

two experts are very similar, then a score combination will produce the best fusion. When the rank-score 

graphs are very different, then a rank combination produces the better result.  

 

3.4. Diversity between Scoring System Module Characteristics. 
Returning to the rank and score function definitions of Section 3.1, it is now possible to define a set of 

tracker rank-score functions. The rank score function for tracker module k for target j is: 
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Figure 3.4: Example rank-score graphs generated by the 

RAF tracker. Shape refers to the shape video feature described in 

Section 5.1 and Location refers to the Location video feature. The 

score is the inverse of the similarity value defined in Section 5.1. 
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fkj : N  R, fkj(i) = skj(rkj
-1

(i )) = score of track hypothesis d Dj which has rank i 

The rank-score graph of the scoring system module k for target j is the graph of the rank-score function fkj. 

In the case of video tracking, the scoring behavior that is captured by the rank-score graph is a 

characteristic of the scoring system, which includes choice of cue or feature measurements, the video 

scene and the algorithm used by the tracker module. Fig. 3.4 shows two rank-score graphs from one 

tracking sequence (Sequence 9; other examples are presented in [24]). This example illustrates that rank-

score graphs can have a variety of forms, based on the feature and/or fusion operators used as well as on 

the tracking scenario. Hsu and Taksa’s results indicate that when the graphs for a target become 

sufficiently different, a rank fusion operation will most likely perform better than a score fusion operation.  

We compare the rank-score graphs from each scoring system module for each target to determine 

which to use, and which fusion operation to employ. We define the difference between two rank score 

graphs fA and fB  as follows (over N ranks): 





N

i

BABA ififffd
1

))()((),(  

For two modules A and B, when d( fA , fB)  is sufficiently large, then we propose rank fusion will 

outperform score fusion for these two modules A and B. In Section 5 we evaluate this proposition 

experimentally by looking at the combinatorial combinations of the fusion operations and evaluating the 

relationship between this diversity measure and a ground-truth based performance measurement. The 

results of this study will demonstrate that this diversity measure is a useful criterion for selecting fusion 

operations. 

 

4.  Target Hypothesis Pruning and Feature Selection 
In this section, we describe the importance of, and rationale for using the rank-score function in 

the combination of multiple scoring systems for tracking in a scenario with repeated mutual target 

occlusion. In particular we compare this heavy occlusion scenario with a much simpler, unoccluded 

tracking scenario for two tasks important for feature combination in tracking: (a) target hypothesis 

pruning, and (b) feature selection. We show that in the heavy occlusion scenario, using rank and score 

combination has distinct advantages in target hypothesis pruning. On the other hand, we also show that 

the rank-score function and the variation of the rank-score function among individual scoring systems can 

be used to select features that improve the rate of false positives (FP) and false negatives (FN) of the 

combined scoring system. 

 

4.1 Target Hypothesis Pruning 

Hsu et al. [17] introduces the Rank-and-Fuse (RAF) multiple hypothesis video tracking 

framework as a way to investigate the combinatorial options for feature fusion. Experimental results are 

reported for three video sequences of a single target that splits into two separate but very similarly colored 

targets (see Lyons et al. [24]). A variety of fusion operators including fusion using rank as well as score 

combinations are evaluated on each sequence. The top 20 track hypotheses for each sequence are 

compared to ground truth. The best results, measured as the most correct tracks in the top 20 track 

hypotheses, are obtained by using the position feature and no fusion. However, the best fusion results are 

obtained with rank fusion operators, which out-perform the score fusion operator for this tracking 

scenario. A second experiment is conducted, adding a shape feature (target bounding box ratio), and 

inspecting the rank-score graphs for each feature. The shape rank-score graph is of a different overall 

form than that of position or color. They then verify Hsu and Taksa’s conclusion [19] that a rank 

combination of shape and color outperforms a score combination in this situation.  

Hsu and Lyons [16] explore some of the theoretical implications of rank versus score in tracking. 

Figure 4.1 shows examples of typical track hypothesis score distributions for two tracking scenarios. The 

graph data were collected with the RAF tracker using the position tracking feature module (tracking the 

location of the centroid of each foreground region). The track hypothesis pool was logged in each case 
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after tracking had proceeded for approximately 15 frames. Tracking a single, unoccluded target produces 

the distribution in Fig. 4.1(a) (Sequence 3 in Section 5). The distribution in Fig. 4.1(b) is the result of 

tracking two targets that engaged in repeated mutual occlusions; two people walking as a couple 

(Sequence 7 in Section 5). The single target tracking scenario produces a greater variance in scores, 

because the scoring system can distinguish good target hypotheses. There is less variance observed for the 

crowded tracking scenario because the scoring system has difficulty distinguishing good and bad 

hypotheses; the correct choice of target is much less clear cut.  

 

Track Hypothesis Pool: Single Unoccluded Track
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(a) Single, unoccluded target     (b) Two partially occluding targets 

Figure 4.1: Typical score distributions for two tracking scenarios 

 

In [16] we are motivated by this to propose that the track hypothesis scoring distributions are 

different in these cases, and to derive the rank-score graph associated with the scoring system for each of 

the two scenarios. This analysis, presented in Appendix A, illustrates that for a crowded scene the benefit 

of score based fusions and of rank-based fusions will vary depending on the hypothesis pool pruning 

threshold. This explains why in crowded tracking scenarios, working with rank and score combinations 

has a distinct advantage, because the same score cutoff produces more variations in rank in a scenario 

such as Fig. 4.1(a) than in one such as Fig. 4.1(b). So in that case, working directly with rank 

combinations can produce a more accurate result. 

 

4.2 Feature Selection 

The analysis of the previous section can be continued to understand the implication of rank versus 

score in selecting features for fusion when tracking in a crowded scenario by restricting our attention to 

scenarios such as Fig 4.1(b) but now considering more than one scoring system. In [16] we show that if 

scoring systems with complementary rank-score functions (e.g., Fig. 3.3 f1 and f3) are combined, they 

produce a better performing combination. We have used the number of false positives (FP) and false 

negatives (FN) associated with the combination as our criterion for evaluating performance. If scoring 

systems with complementary rank-score functions are combined, they produce a combination with a rank-

score function which will minimize the false positives (FP) and false negatives (FN) associated with the 

combination. Appendix B presents a revised form of this argument. 

Trackers with complementary rank-score graphs should be distinguished from trackers whose 

output is negatively correlated or independent. The latter is a relationship between the scores (i.e., the 

score function s(d) for d in D, the set of all track hypotheses) the trackers assign to a specific track. 

However, the former is a relationship between scoring behaviors (i.e., the rank-score function f(i) for i in 

N=[1, n] and |D|=n ), irrespective of the track being scored. Trackers may be correlated, negatively 

correlated or independent and still have complementary rank-score graphs. This gives the rank-score 

characteristic approach a distinctive advantage of characterizing the scoring behavior difference. It leads 

to a new approach to the quantitative and qualitative study of using, for example, the rank-score 

characteristics as diversity among multiple scoring systems. 
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5. Experiments 
In this section, we describe the implementation of the video tracker (Section 5.1), and present two 

types of experimental results: 

(1) Type I Experiments (Section 5.2.): These show that for crowded scenes, a mix of score combination 

fusions and rank combination fusions can produce a significantly better tracking result. The 

experiments do not say how to choose operators to produce the improvement.  

(2) Type II Experiments(Section 5.3): These are the same as Type I except that we incorporate the rank-

score graph information for selecting between fusions. They demonstrate that the difference of rank-

score graphs criterion is an effective way to select which fusion operation to perform. 

 

 Sequence Description Frames 

1 1 moving target, indoors 53 

2 2 slowly crossing targets, indoors 40 

3 1 moving target, outdoors 30 

4 3 moving targets, outdoors, non-adjacent 23 

5 5 targets in loose group, outdoors 40 

6 4 moving targets, outdoors, 2 overlapping 20 

7 2 targets moving as a couple, outdoors 104 

8 7 targets moving as a crowd, outdoors 50 

Table 5.1: Description of video sequences used in Type I experiments 

 We obtained ground truth information for twelve video sequences showing a variety of unrehearsed 

targets moving in one indoor (a lab) and one outdoor (a campus footpath) scene. The targets are not always 

easily separated from the background or each other, and in most sequences, they are close enough to each 

other to cause recurrent partial occlusions. Tables 5.1 and 5.4 describe each of the sequences in terms of 

whether they were indoor or outdoor, single or multiple targets, moving targets as a couple or as a crowd, 

and targets as a loose, overlapping or crossing group. However, in each sequence, some targets can be 

separated most of the time, unlike the dense crowds studied in [34]. Fig. 5.1 shows example frames from 

these sequences. Ground truth was obtained by having a human observer go through the video sequence 

frame by frame and annotate the position of each target. The twelve video sequences are available on the 

Fordham Robotics and Computer Vision Lab web site at http://www.cis.fordham.edu/rcvlab.  

 

         
  

          
(a)                     (b) 

Figure 5.1:   (a) Four example frames showing Lab and Footpath backgrounds 

           and varieties of targets from Sequences 2, 5, 7 and 8. 

   (b) Examples of mutual target occlusions from these sequences (showing  

      extracted foreground regions only, with bounding boxes) 
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5.1 Implementation 
The video tracking algorithm has four stages: 

(1) Background subtraction: Generate potential target measurements by eliminating the background 

elements of the scene. 

(2) Track hypothesis generation: Using the existing pool of hypothesis in conjunction with the new 

target measurements to generate a larger pool of hypotheses. 

(3) Score generation: Score the pool of hypotheses using color, location and shape measurements. 

(4) Fusion and pruning: Fuse multiple score information and reduce the track hypotheses pool size to 

include only the best hypotheses. 

Background Subtraction. Foreground regions are extracted from each frame of the image sequence 

using the non-parametric background estimation technique of Elgammal et al. [8]. A non-parametric 

distribution is learned for each pixel based on 5 to 10 seconds of video of an initial empty (but not static) 

scene. Background learning is suspended during target tracking, and pixels are classified as background 

or foreground based on where they fall with respect to the background distribution learned for that pixel. 

This approach is effective in filtering background phenomena that result in multimodal pixel value 

distributions including moving foliage, rain, a small amount of camera vibration and lighting changes. 

Figure 5.2 shows an example of background subtraction for a three target outdoor sequence. 

Pixels classified as foreground are clustered using a connected components algorithm. Components above 

a threshold size are considered potential target regions. This is indicated in Fig. 5.1 with a gray bounding 

box; the multiple bounding boxes in the vicinity of each component indicate its position and shape in the 

previous four frames.  

Track hypotheses generation. Foreground regions are potential target measurements. For each frame i in 

the video sequence, a common MHT based [1][5] hypothesis generation module associates these 

measurements with the set of existing track hypothesis Di to produce a new pool of all track hypotheses 

        
Figure 5.3:  Multiple track hypothesis for two targets crossing; last frame in sequence (left), top 9 track 

hypotheses (rank order is left to right, top to bottom) drawn superimposed on foreground regions of last frame 

(right). Most of the top 9 (except rank 5) are similar, differing in start and end locations other smaller details. 

     1.  2.      3. 

 

 

     4.  5.      6. 

 

 

     7.  8.      9. 

 

 
Figure 5.2:  Example background subtraction. 
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(e.g., Fig 5.3).  The gating function is that the position of the next component in a track hypothesis, p(cj )  

be within a standard deviation of the predicted position pk for target k: 

(pk – p( cj ))
2
 < k

2 

Any existing track hypothesis which meets the gating criterion for a component cj is associated with that 

region, and a new track hypothesis is generated that is the old track extended by this region. In addition to 

the extension of tracks by new measurements, each region also gives rise to a new track of length 1 

initialized to a fixed new track score (to model newly appearing targets), and each track gives rise to a 

new track of the same length with its score modified by a fixed false alarm score (to model false alarms). 

The pool of track hypotheses grows as follows: 

| Di+1 | = | Di |  (ni + 1) + ni 

where ni is the number of regions segmented from frame i.  

 

Score Generation. All three component trackers in the RAF system share the pool of track hypothesis. 

Each tracker traverses the pool and annotates each hypothesis with a score based on the features measured 

by that component tracker. For example, the color tracker stores an average normalized RGB value 

),,( Ygr  for each track hypothesis, defined as 

 
CCCCCC

Y
N

Yg
N

gr
N

r
1

,
1

,
1

 

where C is the image region of the target, Nc is the number of pixels in C, and r, g and Y are the 

normalized RGB values of a pixel in the image region. This value is compared to the average normalized 

RGB (rj, gj, Yj ) measured on a foreground component cj using: 

222 )()()( YYggrrs jjjcol   

This similarity value is averaged over all the components (one per frame) of a track hypothesis to obtain 

the color score for that track hypothesis. Note that the similarity value is smaller for better hypotheses. 

Because this is the opposite convention to that usually adopted in CFA, all the rank-score graphs in this 

paper have been plotted used the inverse of the similarity score for consistency and clarity. 

 The scores for shape and position are calculated in a similar way:  

 The shape measurement is the area covered by the target, and the shape similarity measure is the 

ratio of target area to foreground component area: 
jC

C
sha N

N
s   

 The location measurement is the image coordinates of the location of the centroid of the target 

region, and the location similarity is the Cartesian distance between target centroid and 

component centroid:  sloc = | p(C) – p( cj )| 

The set of target to measurement association hypotheses (including new targets and false alarms, and 

assuming that at most one measurements matches at most one target) is then generated and used to 

calculate a normalized score value for each track hypothesis.  

 

Fusion and Pruning. The pool of track hypotheses grows combinatorially, and needs to be pruned to stay 

within resource limits. The resource limits are represented by a nominal pool size nT:  

( | Di | > kT nT )  Prune Di down to size nT 
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The values nT=100, kT=2.5 were used here. The top scoring candidates for all targets after fusion were 

preserved. To get the best track hypotheses for each target candidate set, the scores from each of the 

separate trackers are fused in two ways.  

(a) Mahalanobis score fusion (MS): Let sk,l be the score for tk by tracker l and 
2

k,l  be the variance: 

sk,bs = ( qk,col sk,col + qk,loc sk,loc + qk,sha sk,sha ) where qk,l  = 



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(b) Average rank fusion (AR): Let rk,l be the rank of track hypothesis tk  according to tracker l : 

sk,ar =
3

1  (rk,co + rk,loc + rk,sha ) 

In each case, the top m=30 tracks produced by tracker were evaluated against ground truth using a Mean 

Sum of Squared Distances (MSSD): 

 
j i

iji tpgp
nm

2)(
1  

where gpi, i[1, n]  is the ground truth sequence of target centroid image locations and tpij, i[1, n], is 

the jth best track’s sequence of target centroid image locations. Whichever fusion scores lower by this 

measure is considered the better fusion and this is the one adopted for this target. If both score the same, 

then the score fusion was used. Different fusions may be adopted for different targets, and of course, a 

track hypothesis might have several different fusions used on it over the course of successive pruning 

events. The image sequence index number and type of fusion used is recorded for each track hypothesis. 

Once the fusion calculation is completed, the top scoring track hypotheses for each target are kept, 

the rest are deleted, and the tracking continues. 

 

5.2 Mixed Combinations for Type I Experiments 
In the first experiment, the RAF tracking system was modified to carry out two fusion operations, 

a score fusion and an average rank fusion, both described in more detail below. The tracker was run three 

times on each of the eight video sequences; we will refer to these as RUN1, RUN2 and RUN3: 

 In RUN1, single features were used for tracking; i.e., no fusion was performed. RUN1-A used 

the position feature only; RUN1-B, the color feature only; and, RUN1-C, shape feature only. 

 In RUN2, a score fusion of all three features was carried out.  

 In RUN3, the tracker was allowed to evaluate both rank and score fusion of all three features 

whenever a fusion needed to be performed, and selected between them as described below. 

For each target, for each fusion, the top scoring 30 track hypotheses are evaluated against the ground truth 

data using the MSSD measure. In addition, the top 30 tracks were examined to see which fusion operators 

had been used. In RUN3, whenever a fusion needed to be performed, the fusion operator that produced 

the better MSSD value on its top 30 tracks at that point in the tracking process was selected.  

 

Results 
The combined (over all targets) MSSD average and variance for the single feature only runs (RUN1-

A, -B, -C), and the score fusion of all three features run (RUN2), for each video sequence, are shown in 

Table 5.2. The MSSD performance of the score fusion of all three features (RUN2 as in the last column of 

table 5.2) and the mixed score and rank fusion run (RUN3) is shown in Table 5.3. The lower the MSSD 

value shown in the table, the closer the tracking results were to ground truth. In 5 of the 8 sequences 

(shaded row sequences, 1, 3-5, 7 in Table 5.2), use of a fusion operator (RUN2 or RUN3) is an 

improvement on the single feature tracking (RUN1). In all cases, the combination of score and rank 

fusion (RUN3) is as good as the score fusion only (RUN2).  
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Fig. 5.4 shows the best track for the right-most target at the end of each of the four runs for 

sequence 7. While the numbers in Table 5.2 were calculated based on the top 30 tracks (not just the best 

single track, as shown here) for both targets, Fig. 5.4 illustrates typical errors in the single feature tracks 

vs. the fused track. Note that the targets walked as a single group until close to the center of the image; all 

features report very similar tracks for this section. After this, the position feature follows the ground truth 

track, but loses the target frequently. (Missing sections of track indicate that target was lost and then 

reacquired.) Color and shape produce erratic tracks and shape loses target quite frequently. The fused 

result is appears similar to the position result, but without as many target losses. 
 

Seq. RUN1-A 

Position Feature Only 

MSSD Av. MSSD Var 

RUN1-B 

Color Feature Only 

MSSD Av. MSSD Var 

RUN1-C 

Shape Feature Only 

MSSD Av. MSSD Var 

RUN2 

Score Fusion of all 

MSSD Av. MSSD Var 

1 1540.14 720.08 1564.88 1012.44 1538.19 764 1537.22 694.7 

2 708.4 3306.29 726.21 3534.48 583.95 2453.85 816.53 8732.13 

3 117.49 73.09 113.43 67.82 112.77 88.86 108.89 61.61 

4 32.53 9.4 33.67 9.37 33.11 9.36 23.14 2.39 

5 355.29 158.46 345.05 165.2 346.65 155.82 334.138 120.111 

6 74.06 16.7 336.81 960.58 76.2 18.1 96.4 119.22 

7 607.3 266.09 592.61 227.14 612.27 266.51 577.78 201.29 

8 390.16 445.98 548.26 726.49 538.76 738.24 538.35 605.84 

Table 5.2: MSSD results for single features and score fusion of all features. 
RUN1-A, -B, -C show tracking performance using position, color and shape respectively.  RUN2 shows 

tracking performance using a score fusion combination of all three features. Lower MSSD implies better 

tracking performance. 

 

In 4 of the 8 sequences (the shaded row sequences, 2, 6-8 in Table 5.3) use of the combination of 

both score or rank fusion is a significant improvement over the use of score fusion only. Figure 5.5 

illustrates the situation for the right hand target in sequence 7. The top 30 tracks for the three single 

feature cases and the two fused cases are shown overlaid on the ground truth track. The initial part of the 

tracks in every case are similar, since the targets move together until close to the center of the image. 

Many of the tracks for each case are similar (as in Fig 5.3) and almost completely overlay. As in Fig. 5.5, 

the score fusion result, RUN2, is similar to the position result except with fewer target losses.  However, 

displaying the top 30 tracks for position and for score fusion shows that for the last quarter of the image, 

they consist of a mix of tracks for the right and for the left target. On the other hand, the ground-truth 

guided fusion, RUN3, has a collection of tracks that (not surprisingly) closer to the ground-truth right 

hand track. 

 
Figure 5.4:  Top scoring track for the right target in sequence 7 superimposed on the ground truth 

track for the target with three single features and the score fusion:  

(a) Position-only, (b) color-only, (c) shape-only, and (d) score fusion of all three. 

 

(a) 

 

 

 

(c) 

 

(b) 

 

 

 

(d) 
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Seq. RUN2  

Score fusion of all 

 

MSSD Avg.  MSSD Var. 

RUN3  

Score and rank fusion 

using ground truth to select 

MSSD Avg.  MSSD Var. 

t value 

1 1537.22 694.7 1536.65 695.49 0.1 

2 816.53 8732.13 723.13 3512.19 4.65 

3 108.89 61.61 108.34 60.58 0.23 

4 23.14 2.39 23.04 2.30 0.186 

5 334.138 120.111 332.89 119.39 0.44 

6 96.4 119.22 66.9 12.91 8.12 

7 577.78 201.29 548.6 127.78 15.5 

8 538.35 605.84 500.9 57.91 9.08 

Table 5.3: MSSD results for score fusion and ground truth selected mix of score and rank fusion. 
RUN2 shows tracking performance using a score fusion combination of all three features (as in Fig 5.2). RUN3 

shows tracking performance when using ground truth to select between score and rank fusion. RUN3 results 

that improve on RUN2 with a significance > 95% are shaded. 
 

 

 
Of course it is possible that the difference in MSSD measurements for the fusions was due to 

chance. To address this, we calculate the t-test statistic [29] for the RUN2 and RUN3 fusion distributions.  

The results of the significance test are shown in the last column of Table 5.3. Results with a significance 

level of 95% or greater are exactly those shaded in row sequences 2, and 6-8. 

 

Discussion  
 Although the MSSD for the combined score and rank fusion case (RUN3) is smaller for all 8 

sequences, this difference is only significant at the 95% level or greater in four sequences, sequences 2, 6, 

7, and 8. Looking at the description of these sequences in Table 5.1, they all share the characteristic that 

they include multiple, overlapping targets. We do not see a performance improvement in single targets 

(e.g., sequences 1 and 3) or tracking multiple targets (e.g., sequences 4 and 5). However, when there are 

multiple targets that move in such a way as to cause repeated partial occlusion, then we observe a 

 
Figure 5.5:  Comparison of top 30 tracks overlaid for three single feature cases and two fused cases: 

(a) Position-only, (b) color-only, (c) shape-only, (d) score fusion of all 3 (RUN2), and (e) ground-

truth selected score or rank fusion of all 3 (RUN3). 

(a) 

 

 

 

 

 

 

(c) 

 

 

 

(e) 

(b) 

 

 

 

 

 

 

(d) 
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significant improvement from the additional use of a rank-based fusion operation. In this situation, there 

is a lot of splitting and merging of the image regions associated with the targets. In the video sequences 

without such effects, we produced no significant quality improvement. This phenomenon is consistent 

with our previous experiments and analytic work as described in Section 4.  

This experiment demonstrates that including rank fusion in addition to score fusion can be 

valuable in tracking. However, this approach of including rank and score fusion alone could not be used 

as an algorithmic basis for a better tracker, as it requires the existence of ground truth data to select 

whether rank fusion or score fusion should be used. We need to develop a way to decide when to use rank 

fusion and when to use score fusion that is not based on knowledge of the ground truth. In the next 

section, Section 5.2, we will compute the rank-score function fA of a tracker A and use the variation 

between fA and fB to guide us in the process of combination using rank fusion and score fusion. 

 

5.3 Selection of Combination using the Rank-Score Characteristics for Type II Experiments 
In Section 3.4 we have defined the rank-score diversity d(fA, fB ) of  two rank-score functions fA 

and fB  for trackers A and B. In our implementation we have three features. Let ft be the rank-score graph 

for tracker t. We use the largest absolute difference between any two of the three features for selecting 

fusions: 

rs = MAX | d(ft1, ft2) | for t1t2 

Note that the rank-score graph for each target for each feature is computed dynamically from hypothesis 

score information. The null hypothesis in our type II experiments is that this maximum difference of rank-

score graphs is the same for fusion events where the score fusion produced the better results as for fusion 

events where the rank fusion produced the better result. If we disprove the null hypothesis, then this 

maximum difference is a useful criterion for selecting between fusion operations.  

 

Sequence Description Length 

9 2 slowly crossing targets, outdoors,  28 

10 2 adjacent moving targets, outdoors 43 

11 9 targets in group, outdoors 35 

12 1 quickly moving target, outdoors 34 

Table 5.4: Description of video sequences added for Type II experiments 

 
Seq. RUN2 

Score fusion  

 

MSSD Avg.  MSSD Var. 

RUN3  

Score and rank fusion 

using ground truth to select 

MSSD Avg.  MSSD Var. 

RUN4  

Score and rank fusion using 

rank-score function to select 

MSSD Avg. MSSD Var. 

1 1537.22 694.47 1536.65 695.49 1536.9 694.24 

2 816.53 8732.13 723.13 3512.19 723.09 3511.41 

3 108.89 61.61 108.34 60.58 108.89 61.61 

4 23.14 2.39 23.04 2.30 23.14 2.39 

5 334.13 120.11 332.89 119.39 334.138 120.11 

6 96.40 119.22 66.9 12.91 67.28 13.38 

7 577.78 201.29 548.6 127.78 577.78 201.29 

8 538.35 605.84 500.9 57.91 534.3 602.85 

9 143.04 339.73 140.18 297.07 142.33 294.94 

10 260.24 86.65 252.17 84.99 258.64 85.94 

11 520.13 2991.17 440.98 2544.69 470.27 2791.62 

12 1188.81 745.01 1188.81 745.01 1188.81 745.01 

Table 5.5: MSSD results for Type II experiments 
Lower MSSD implies better tracking performance. 
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In the final phase of this experiment, we identify a threshold value for the maximum difference 

measurement and we rerun the eight video sequences through the tracker but now using the maximum 

difference measurement (rather than the ground truth measurements) to select fusion operation. In 

addition, we run the tracker on 4 additional video sequences that were not used in the selection of the 

threshold operation. We compare these MSSD results with those from the first experiment. 

 

Results  

The ground-truth guided combination of score fusion and rank fusion (RUN3) of the type I 

experiments) was repeated, and the average and variance of the maximum difference of rank-score graphs 

was calculated separately for score and rank fusions for the four video sequences for which RUN3 

showed a significant improvement (sequence 2, and sequences 6-8). The average value of the difference 

for the score fusion operator, rs = 0.05, was then selected as a threshold value for this second set of 

experiments. If the variation between the rank-score graphs is less than or equal to rs then a score fusion 

is used, otherwise a rank fusion is applied. 

All 8 original sequences and the 4 new sequences were run, and the MSSD performance figures 

collected. The results are shown in Table 5.5 labeled as RUN4. For convenience of comparison, the 

RUN2 and RUN3 figures from Table 5.3 are shown again in Table 5.5. Appendix C shows four typical 

rank-score graphs generated during RUN4.  

 

Discussion 
 Table 5.5 shows that in all of the 12 sequences, the use of the variation between rank-score 

functions to select a fusion operator (RUN4) performed as good as the use of score fusion (RUN2).  

However, in 4 of the 12 sequences (2, 6, 8, and 11), RUN4 performed better than RUN2. Our conclusion 

from this is that the maximum variation between rank-score graphs is a useful predictor for which fusion 

operator to use to produce the best tracking performance. On the other hand, when we compare the rank-

score selected fusion (RUN4) to the ground-truth selected fusion (RUN3) we see that the rank-score 

selected fusion performance does not always achieve the level of performance as the ground-truth 

selected fusion. This is not surprising as the ground-truth selected fusion has the advantage of knowing 

the correct target track before making its choice. However, in a real-time application, ground truth will 

not normally be known.  

As such, our experiments confirm what Hsu and Taksa [19] proposed, that the rank-score 

function is a feasible and useful characteristic to guide us in the process of rank and score fusion. As can 

be seen from Table 5.5, RUN4 using the rank-score function selected fusion, and without knowing the 

ground-truth, performed as good as RUN3 except in three cases (sequences 7, 8, and 11). Even in these 

three cases, RUN4 is as good as RUN2 for sequences 7 and 8 and much better than RUN2 for sequence 

11. 

 

6. Summary and Conclusions 
This paper presents a data-driven, combinatorial fusion analysis approach to the problem of selecting 

a multisensory fusion operation to improve the performance of multitarget video tracking with occlusion. 

Our tracking framework considers each feature measurement to be a separate scoring system on the set of 

target track hypotheses, and scoring behavior was characterized by the rank-score function. Two fusion 

operations were considered: an average rank fusion and a Mahalanobis score fusion. We proposed a 

measure of diversity d( fA , fB) between two scoring systems (cues, features or tracking systems) A and B 

which is equal to the sum of differences between the two rank-score functions fA(i) and fB(i) across all 

ranking orders i in N. The measure of performance we used was the mean sum of squared differences 

(MSSD) between a hypothesized track and the ground-truth for the track, as established by a human 

observer.  

We used 12 video sequences covering a variety of situations. Our results are summarized as follows: 
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(1)  Combination using simple score fusion (RUN2) improved the performance over single feature 

tracking. 

(2)  Using ground-truth information to select a mix of rank and score fusion operations (RUN3) 

produces a significant improvement over score fusion. 

(3)  Using rank-score diversity to select a mix of rank and score fusion operations (RUN4) produces a 

better resultant than score fusion alone (RUN2) but not as good as the ground-truth selection 

(RUN3). However, since ground truth is not typically known, the rank-score diversity approach is 

more powerful. 

More generally speaking, the CFA approach has several advantages. Among them: 

(1)  Efficiency: For each target, we use n tracks and m scoring systems, converting score functions to 

rank functions using fast sorting algorithms would require a maximum of n*m*log n steps. Rank 

fusion or score fusion using the average operation requires n additions only. As an example, on a 

1.4GHz Pentium M laptop with 376 Mbytes of RAM running Windows


 2000, RUN4 operated 

between 5 and 12 fps. This is somewhat conservative timing since a great deal of diagnostic and 

logging information was also being generated during the run. 

(2)  Scalability: Our method can be applied to the case of multiple scoring systems with a large 

number, n, of tracks. The number of scoring systems, m, can also be large. In that case, a subset of 

scoring systems would have to be selected to perform fusion.  

(3)  Adaptiveness: The fusion operation is dynamically selected from the set of fusion rules, to best 

suit the target and scene characteristics, as tracking proceeds.  

(4)  Diversity: Measurement of diversity between the multiple scoring systems (cues, features and 

systems) is explored to guide us in the selection of rank fusion or score fusion. In this paper, we 

use the variation between the rank-score functions.  

(5)  Visualization: The rank-score graph is a highly visual representation of scoring behavior and of 

diversity among multiple scoring systems. 

7. Future Work 
Our current paper represents one of the first in a series of on-going projects using the framework 

of CFA and the concept of a rank-score function in the study of target tracking and recognition, and the 

design of a robust, real-time and on-line intelligent system for such applications. Our study suggests 

several issues and directions for future work. These include: 

(1) Performance evaluation: The MSSD measurement is used in this paper to evaluate the performance 

of a scoring system. In general, given two scoring systems, A and B, we like to find a criterion (or 

criteria) to predict the improvement of the combined scoring system C(A,B). In this regards, the 

combination C(A,B) is seen as a positive case if the performance of C, P(C), is greater than or equal 

to the performance of A and  B (i.e., P(C)  max{P(A),P(B)}). Otherwise it is a negative case (see 

[28][43]). We have started a study along these lines ([15]).  

(2) Diversity measurement: The difference of the rank-score functions fA and fB of two scoring systems 

A and B was used in this paper to represent the scoring diversity between A and B. That is,  d( A, B) = 

d( fA , fB). We will explore the possibility of using the rank functions, rA and rB, or the score function, 

sA and sB, and their variances d(rA , rB ) or d(sA , sB ) as diversity measurements respectively. The 

diversity d( A, B) = d(rA , rB ) was used in the information retrieval domain [28] and d( A, B) = d( fA , 

fB) in virtual screening and drug discovery [43] and protein structure prediction [22]. 

(3) Frame sequences: In this paper, we applied CFA to each target at each frame, Fi, i[1, f].  Our 

performance results and comparisons were based on averaging the MSSD’s over all the frames. We 

will, in future work, explore the diversity d(A,B) between a pair of scoring systems (cues, features or 

systems) across all frames of a tracking sequence (see [22]). This will have to be done off-line on 
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stored video sequences. However, exploring diversity along this dimension might shed some light on 

the variation between different cues, features or tracking systems in the long run. Let F = {F1, F2, …, 

Ff } be the set of frames in a video sequence. Let A and B be two cues, features or systems in the set of 

scoring systems C = {C1,C2, …,Cm}. The diversity score function defined on F, s(A,B)(F)= 

|)()(|



Nj

BA jfjf , where j is in N =[1, n], n=|D| and D = {d1, d2, …, dn}  is the set of tracks, and fA 

and fB are the rank-score functions of the scoring systems A and B respectively. It would lead to the 

diversity rank function r(A,B)(F) if we sort s(A,B)(F) into descending order. The diversity rank-score 

function f(A,B)(F) is:  

f(A,B)(j) = ( s(A,B) o r(A,B) 
-1

)(j) = s(A,B) (r(A,B) 
-1

(j)) 

where j is in [1, f]. The diversity rank-score function was defined and studied in the CFA framework 

[14], [22]. Even though this measurement has to be calculated off-line, on a stored sequence of frames, 

it allows the diversity between two features across all frames to be studied. It is frame independent 

and may be more accurate when used in subset selection among cues, features or scoring systems for 

combination and fusion. 
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Appendix A: Target Hypothesis Pruning 
 

There is less variance observed for the crowded tracking scenario because the scoring system has 

difficulty distinguishing good and bad hypotheses; the correct choice of target is much less clear cut. We 

are motivated by this to propose that the track hypothesis score distributions are different in these cases. 

The track hypothesis score histograms ha and hb in Fig. A.1 are proposed as typical for scenarios such as 

those in Fig 4.1(a) and Fig. 4.1(b) respectively (where the vertical -axis is frequency and the horizontal 

p-axis is score of a track hypothesis). By definition of ha we note that approximately 

.)()(

1

0

1

0

  dpphdpph ba  Let pc be the value of p when ha and hb intersect. In our example graphs, pc is 

close to 0.5. The histogram ha reflects that there are fewer hypotheses with good scores (to the right of pc) 

than other hypotheses with clearly worse scores (to the left of pc). On the other hand, hb has similar 

numbers of hypotheses with good and bad scores. Based on this proposition, they then show pruning the 

pool of tracking hypothesis D has a much greater effect on the variation in ranks in a crowded tracking 

scenario (Fig. A.1 (b)) than in a sparse tracking scenario (Fig. A.1 (a)). 

The histograms in Fig A.1 are used to derive the rank-score graph associated with the scoring 

system for each of the two scenarios. The rank of a track hypothesis is related to its score and the score  

histogram as follows: 

 


10.1
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ssx
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The rank functions ra and rb for ha and hb respectively in Fig. A.1 can be derived in this fashion 

and graphed against score to yield the rank-score graphs fa and fb in Fig. A.2. From the rank-score graphs 

in Fig. A.2 it can be shown (see [16] for details) that if a score cutoff px is used to prune the track 

hypothesis pool, then as long as px > pc this will produce a greater variation in ranks in the crowded 

scenario (fb in Fig. A.2) than in the sparse scenario (fa in Fig. A.3). This is apparent from Fig. A.2 since fa 

has a steeper slope than fb in the interval px > pc and f b
 -1

(pc) - fb
 -1

(px) > fa
 -1

(pc) - fa
 -1

(px). As previously 

mentioned, the variation of the graph of the rank-score function between two experts has impact on 

whether a rank combination or score combination produces a better result [19]. Hence, these results 

illustrate that for a crowded scene, the benefit of score based fusions and of rank-based fusions will vary 

depending on the hypothesis pool pruning threshold. In crowded tracking scenarios, working with rank 

and score combinations has distinct advantages: the same score cutoff px produces more variations in rank 

in fb than that in fa. Working directly with rank combinations can therefore produce a more accurate result. 
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Figure A.1:  Frequency of scores  

for track hypotheses in  

(a) sparse scenario, and (b) crowded scenario 
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Appendix B: Feature Selection 
 

For this analysis, we restrict our attention to Fig A.1(b) but now considering more than one 

scoring system. Note that fb in Fig. A.2 is the typical ideal form of the rank-score graph in this case as 

related to hb(p) in Fig. A.1 with the tracking scenario for occluded targets in Fig 4.1(b).  However, a given 

scoring system will vary from this typical case, and may produce a rank-score graph that curves above or 

below this ‘ideal’ case. This is shown in Fig. B.1, where hb1 and hb2 are the histograms for two different 

scoring systems when tracking in the crowded scenario. 

 We note again that since  
1

0

1

0

21 )()( dpphdpph bb  approximately, the up-down curve properties 

of hb1 and hb2 have to be opposite. This leads to the rank-score graph of fb1 and fb2 respectively in Fig. B.2. 

 The feature selection problem can be phrased as: given the scores for each hypothesis for each 

feature, which features should be fused to produce the best performing result. We have used the number 

of false positives (FP) and false negatives (FN) associated with the combination as our criterion for 

evaluating performance. We show that if scoring systems with complementary rank-score functions f1 and 

f2 are combined so that they produce a combination with a rank-score function that is more similar to fb of 

Fig. A.2, and Fig. B.2 then this will minimize the false positives (FP) and false negatives (FN) associated 

with the combination with respect to fb (see [16]). 

A concave-up rank-score graph, such as fb1, assigns fewer ranks to the top scoring tracks and 

many to the lower scoring tracks, whereas a concave-down rank-score graph, such as fb2,  assigns many 

ranks to the top scoring tracks and few to the lower scoring tracks. We refer to concave-up and down 

members of this family as complementary graphs. The rank-score graphs for the two scoring systems 

shown in Fig. B.1 lead to the rank-score graphs shown as fb1 and fb2 in Fig. B.2, and these are 

complementary rank-score graphs. 

In general, two rank-score graphs won’t be perfectly complementary as above, but if the rank-

score graph of the combination is closer to the rank-score graph fb of Fig.A.2, then the FPs or FNs will be 

reduced. Hence in choosing a subset of features to fuse when tracking in crowded tracking scenarios, 

selecting features with complementary rank-score graphs will produce a result that minimizes false 

positives and false negatives. 
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Figure B.1:  Histograms for two complementary 

scoring systems (hb1 and hb2) in the crowded 
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Appendix C: Example Rank-Score Graphs generated during RUN4. 

Figure C.1 shows four typical rank-score graphs generated during RUN4. The two of three 

feature rank-score graphs selected for rs (i.e., the ones with largest absolute difference) are shown.  
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  (a), (c) rs > 0.05     (b), (d) rs   0.05 

Figure C.1: Typical rank-score graphs generated during RUN4 for Sequence 8.  

The score value is the inverse of the feature similarity value in Section 5.1. 
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