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Abstract— Constructing action plans for a robot operating in
an environment containing uncertain and dynamic events is a
difficult task. Indeed, the inadequacy of the standard approaches
for representing and producing plans for such environments has
led some researchers to abandon explicit plan representation
and to directly program behavior instead. Ultimately, no matter
which approach is taken, preducing appropriate behavior in
such environments requires writing robot programs or action
plans that include conditionals, loops, requests for sensory data,
concurrency, etc. Existing approachs are simply not adequate
to the task of modeling and analyzing such plans. Nonetheless,
it is necessary that such plans be open to formal analysis:
the complexity of control necessary to operate in uncertain
and dynamic environments demands that more than human
intuition be used to verify, or preferably autogenerate, such
plans. The problem of constructing a plan representation that
can deal with the complexity of representing and analyzing robot
behavior in uncertain and dynamic environments is addressed.
The key contributions are as follows. A concurrent-process based
representation is developed which represents both the plan (or
controller) and the uncertain and dynamic environment in which
the plan operates. A methodology is outlined for analyzing the
behavior of this interacting system of plan and world. This
methodology is illustrated with a mixed-batch example from the
domain of robotic kitting. To balance the theoretical work, a
description of the implemented robot kitting cell is presented.

I. INTRODUCTION

ONSTRUCTING ACTION PLANS for a robot oper-

ating in an uncertain and dynamic environment is a
difficult task. An uncertain and dynamic environment is one
in which the robot has uncertain knowledge of what events
can happen and in which agents other than the robot can
produce dynamic effects. Existing plan representations, such as
situation calculus (e.g., STRIPS [7]), procedural nets (NOAH
[32]) and AND-OR Graphs [13], cannot be applied in these
environments without the aid of a program such as a reactive
plan exector, e.g., SROMA [37]. This approach can be so inef-
fective that it has encouraged some researchers to completely
abandon the notion of explict plan representation and instead
to directly program robot behavior, e.g., Brooks [2], Agre and
Chapman [3].

No matter which approach is taken, actually producing
appropriate behavior on a robot operating in an uncertain and
dynamic environment requires writing flexible, detailed robot
control programs. These programs need a rich vocabulary of
conditionals, loops, sensory requests, etc., and are usually writ-
ten as a set of concurrent, communicating modules. Existing
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plan representations were not designed to represent plans at
this level of complexity. They present highly simplified actions
and plan control structures. As McDermott [27] has pointed
out, in operating in uncertain and dynamic environments, the
line between robot plan representation and robot programming
language blurs. Arguably, the only remaining difference is that
a plan representation has an additional requirement that it be
possible to reason formally about plan properties. This paper
is motivated by the observation that since we ultimately have
to write flexible, detailed robot programs, it is appropriate that
we develop a plan representation that can capture and reason
about such programs.

In previous work, we have developed a foundation for repre-
senting robot control programs as concurrent, communicating
process networks. In [18], [19], we proposed the robot schemas
(RS) model, a special model of computation designed for
robot programming. That work set forth the set of special
characteristics of robot computation and developed a model
of concurrent computation to suit this set. In this paper, we
develop an algebraic approach to specifying and analyzing RS
process networks. This approach was first outlined in [17] and
is being used in on-going work to formalize a reactive planning
paradigm [21], [23]. In this paper, the algebraic system is
employed to analyze the interactions between a flexible robot
plan and an uncertain and dynamic environment. We follow the
lead of discrete-event control [11], [15], [30] in considering it
important to model both the robot plan and the environment in
which the plan is to be carried out. It is not sufficient to verify
a plan against an informal model of the environment: This
may suffice in a static, well-understood environment; however,
both dynamic events and uncertain events introduce sufficient
“pbranching” complexity into an environment model to render
an informal approach untrustworthy. The approach developed
in this paper models both plan and environment as a couple
of concurrent, interacting process networks, and begins the
development of a methodology to analyze this interaction.

Our view of uncertainty and dynamics will essentially be
a discrete-event one: that is, we shall not directly focus on
the geometric interpretation of these phenomena as many
other authors have, e.g., Donald [4], Ellis [6], Hutchinson and
Kak [14], etc. For the problem domain we shall introduce,
robotic kitting (described in Section II), geometric reasoning
is not a major part of the control problem. Introducing specific
techniques to handle geometric uncertainty is quite compatible
with the discrete-event approach developed here. Indeed, one
source of the uncertainty data describing discrete events might
be a geometric model.
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This paper is laid out as follows. We begin by presenting
our problem domain: implementing a kitting robot. We will
take a representative running example from this domain,
that of kitting for mixed-batch production runs. The list of
desiderata at the end of that section captures the objectives
of the remainder of the paper. Section III looks at existing
approaches to plan representation and why they are inadequate.
Section IV is an informal introduction to the RS model
and the notation used throughout the paper. It concludes
by developing an RS plan to carry out the kitting task.
The point here will not be the novelty of the plan—indeed,
we claim that writing this kind of program is effectively
inescapable in real-world robotics—rather the point is that here
we present the plan in a way directly amenable to formal
reasoning. Section V introduces the concept of modeling
uncertain and dynamic environments. The “Traffic World” of
Sanborn and Hendler [33] is used as an illustrative example,
showing that the notation previously introduced for plans can
also describe environments. A more formal view of RS is
presented in Section VI, establishing the background for a
sample liveness and efficiency analysis of the mixed-batch
kitting example in Section VII. These two sections present
a first attempt to construct a methodology for analyzing
plans as interacting process networks. The more detailed
formal material supporting these sections is presented in the
appendices at the end of the paper.

II. PROBLEM DOMAIN: REACTIVE KITTING

A kitting robot is a robot system that puts together assem-
bly kits. Simpler and cheaper automation can construct the
assemblies once they have been placed in the kits and routed
appropriately. Instead of building a factory full of expensive,
intelligent robots, manufacturers can focus the intelligence and
cost into a small number of kitting robots which feed the
rest of the factory. Kitting provides the line stock availability,
the line scheduling flexibility, and the reduced station cycle
time productivity for competitive results [34]. However, to
achieve this ideal, the kitting robot has to “iron out” all the
uncertainties associated with the assembly process so that it
can be done by simpler automation.

The kitting robot typically has to deal with the following
sources of uncertainty and dynamics:

1) Variable arrival rates and poses of incoming parts. The
primary job of the kitting robot is to take parts (per-
haps directly from stores) with high position and pose
uncertainty and to put them in a kit.

2) Errors in incoming parts. Faulty parts need to be re-
moved before they either cause errors in downstream
automation, or become assembled into (faulty or low-
quality) products.

3) Substitutability of incoming parts. Some available parts
may be substitutable for other, unavailable parts.

4) Mixed batches of kits. The robot may be serving more
than one line, or the lines may be running mixed batches.

5) Variable availability of resources. Examples of resources
are tools or machines with which the the robot needs to
coordinate directly.

6) Response to events in the downstream automation. For
example, machines breaking down, or alternate machine
configurations.

7) Response to factory management advice. For example,
response to changing the batch mix or throughput, or
implementing once-off fixes for special situations.

Thus, the key characteristic of the kitting robot is not so much
its ability to reason about assembly, but rather its ability to
choose timely and effective actions to suit the uncertain and
dynamic events in its environment. This work emphasizes the
discrete-event nature of the environment. However, nothing
we develop will be incompatible with the use of more specific
geometric work on uncertainty.

An assembly plant will typically produce some number (po-
tentially in the hundreds) of variants of each of their assembly
products. Each variant is essentially the same product but with
a number of special parts to tailor it for a particular customer
or market. The kitting robot is fed assembly components
and produces kit trays with all the parts for each variant.
These trays are then fed to hard automation machinery which
produces the finished assembly with high quality and high
speed. As a running example, we will look at an assembly kit
for a product with four variants as follows:

MOTOR1
TRAY — { or
MOTOR2

and

SWITCH?

SEALED.DOUBLE.SWITCH

Consider the situation where the factory is producing all four
variants in mixed-batch and we need to program the kitting
robot to correctly produce the four variants depending on what
parts are fed to it. The uncertainty here concerns the arrival
times of instances of the parts. Arrival events are dynamic in
that multiple part instances can be piling up as kitting proceeds.
Fox and Kempf [9] introduced a useful efficiency property
that is relevant in this example, opportunism. We say that the
kitting behavior is opportunistic if the robot chooses which
variant to construct based on what parts have arrived to date.

The following is our list of desiderata for solving this
example: Firstly, we want to be able to represent this plan
in the same manner that we will need to execute it on a
computer. That is, as a highly conditional program phrased
as concurrent and communicating processes. Secondly, we
want this representation to be amenable to formal analysis.
Our objective is to represent the executable form of the plan
— the form that all of us who use robots eventually end up
writing as a set of C-programs or whatever — in such a manner
that it can be reasoned about formally. The immediate goal of
formal reasoning in this paper will be to verify properties of
the plan; our long-term goal is to be able to automatically
generate such plans based on a high-level description of the
plan requirements.

Finally, we are not satisfied to verify a plan against an
informal description of the robot’s environment. There are
cases where this may be sufficient, e.g., a static, certain

SWITCH1
SWITCH.SOCKET +
+ 1
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environment. However, both dynamic events and uncertain
events introduce sufficient “branching” complexity into an
environment model to render an informal approach untrust-
worthy. The perspective of discrete-event control is highly
illuminating on this issue [30]: both controller (plan) and plant
(environment) are modeled in the same formal representation
and their mutual interaction is then analyzed'.

It is worth repeating here that we don’t claim novelty for this
example or the program we ultimately build to solve it; rather
the point here is that we will be able to capture models of both
the executable, conditional plan and the uncertain and dynamic
environment and reason formally about their interaction.

III. BACKGROUND

STRIPS [7] demonstrated the use of situation calculus, in
which a robot action is modeled as a state to state transition
described by a list of preconditions and effects. This approach
turned out to have severe disadvantages. Since the robot
is the only effector of change, it becomes impossible to
represent the actions of agents other than the robot, e.g., the
asynchronous arrival of parts in our mixed batch example.
If the representation is relaxed to allow other sources of
change then the issue of how to model the resulting concurrent
actions arises. Furthermore, the STRIPS concept of a plan
is a single fixed sequence of actions. This is inefficient and
possibly disasterous in a dynamic environment, since the
environment may change and render useless the one action
sequence generated.

Later work addressed some of these problems. The
constraint-posting approach [36] addressed the issues of
external and concurrent events. Sacerdoti's NOAH [32]
introduced the procedural net plan representation, later used
in many systems, e.g., NONLIN [35], SIPE [36]. This allows
plans to be defined as partially ordered sequences of actions.
However, the action representation still had little support
for control structures such as loops and conditional actions,
and robot essential issues such as sensory requests were
omitted. As a recent example, despite the powerful uncertainty
reasoning present in the Spar assembly planner [14], the
plan representation it ultimately generates, although detailed
enough to be executed, is not very flexible. Some researchers
have focused on the problem of producing a rich and flexible
plan language, e.g., Firby’s RAPS [8] and McDermott’s RPL
[26]. To achieve this end, however, they have sacrificed the
ability to precisely reason about plan execution, one of the
nicer features of the simpler plan representations. It is not
clear if this is a permanent disadvantage; indeed, the work
presented in this paper could be used to construct, say, a
process semantics for RAPS.

The AND/OR graph (Hypergraph) is an important plan
representation introduced by Homem de Mello and Sanderson
[13] for assembly planning. An AND/OR graph represents the
valid states of the assembly; but not the necessary actions or
sensing to identify or achieve those states. In this sense it is
more akin to a subgoal decomposition than to an action plan.

1Indeed, Heyman [11] has a DEC approach that is initially very similar to
the approach we will demonstrate here.

243

Could the graph simply be relabelled to specify actions rather
than states? Unfortunately, AND/OR graphs then demand an
explicit enumeration of all the possible courses of action. This
can lead to state explosion with even simple uncertain and
dynamic environments such as the mixed batch example where
it becomes possible to have multiple instances of the same part.

The usual solution to bridging the gap between a plan
representation such as those discussed above and the real-
world behavior necessary from the robot is to introduce a
reactive plan exector, e.g., SROMA [37]. In general, this does
provide a working solution. However, it introduces some extra
problems too: we may lose whatever formal guarantees the
plan was constructed with, since the exector needs to be able to
modify the plan; or alternatively, we may miss opportunities or
encounter errors if the exector is prevented from modifying the
plan. This problem arises because the plan generation process
has now been artificially divided over two modules.

As a reaction to the inflexible behavior that existing plan
representation and planner control architectures produce, some
reseachers have disavowed having any explicit plan rep-
resentation, e.g., Brooks [2], Agre and Chapman [3] (see
[22] for a review). Instead they control the robot via the
interaction of a number of concurrent behavior-generating
modules or programs. They have the full flexibility of a (robot)
programming language in building these modules, and can
thus specify behavior that would be impossible to specify
with the plan representations discussed. These researchers have
demonstrated that versatile and robust behavior can be pro-
duced in unstructured environments. However, in disavowing
traditional approaches, they have lost the ability to formally
explore the effects of executing a plan. We argue that formal
methods are needed especially in unstructured environments,
since the more complex the environment, the less reliable
human intuition will be in determining plan correctness or
efficiency.

In summary, to generate appropriate behavior in a uncertain
and dynamic environment, it is necessary to use an action
representation capable of capturing detailed programs includ-
ing conditionals, loops, sensory commands, and concurrent,
interacting processes. However, to make this representation
useful from a plan verification and generation perspective, it
should be open to formal analysis. There is some work along
these lines. Rosenschein’s situated automata [31] provide a
way to reason about the correctness of reactive machines.
However, in that formalism, while the reactive machine is
cast precisely, the environment in which the machine operates
is captured by an implicit “background theory” assumed to
contain all the “right” information about what the world can
do. We advocate following the lead of the discrete-event
control literature to address this problem [11], [15], [30]:
both controller (plan) and plant (environment) are modeled
in the same formal representation and the interactions in
their concurrent composition analyzed. This means that the
environment can be modeled with the same formality as the
plan.

In the next section we introduce a plan representation that
can deal with the complexity of representing and analyzing
the kind of programs that are unavoidable in programming
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xul w2 (Pl ] pz)
v1,92 | process | pl,p2
parameters X results

Fig. 1. Notation for process parameters/results.

a robot to produce appropriate behavior in an uncertain and
dynamic environment. The emphasis will be on introducing the
notation and representing plans. In Section V we will discuss
using the same notation to represent uncertain and dynamic
environments. Finally, in Sections VI and VII we present a
methodology for analyzing the interactions between plan and
environment,

IV. REPRESENTINGACTION PANS USING THE RS MODEL

In this section, we present an approach in which robot action
plans are represented as networks of concurrent processes. In
[19] we argued that this is an appropriate model for robot
programming. Here we build on that approach to develop a
plan representation which has the power of a programming
language. The first step in defining our plan representation will
be to define what we mean by a process. We will then define
how processes are combined together to produce plans, and
how individual processes can communicate with each other.
We then present, initially without formal proof, the RS plan
for the mixed batch kitting problem of Section II.

Processes. A process is a unique locus of computation
[19]; it could refer to a piece of hardware, or a time-sliced
software thread, or a physical agent of change. A description
of a process, or network of processes, is called a schema.
For example, Joint;., denotes a process that is an instance
of the schema Joint with parameter j set to value v (when
unambiguous, we write Joint,). Processes can return results
when they terminate, e.g., Joint, (p) denotes that Joint has
one parameter v and returns one result value p (see Fig. 1).
Formally, a process is defined as a special kind of automaton
[19].

We distinguish two conditions under which a process ter-
minates: a successful termination, a stop, or an unsuccessful
termination, an abort. Processes can be deterministic or non-
deterministic. A nondeterministic process when executed with
identical parameters and under identical conditions may still
produce differing results. (This is necessary to model uncertain
environments),

Processes are built into networks using several kinds of
process composition operators. These operators allow us to
express the decision making in an action plan as a (conditional,
usually based on sensory data) composition of more atomic
processes. By using the techniques of process algebra [12],
[10], such operators can also be used in the analysis of the
behavior of a plan. However, we postpone that perspective for
now.

Composition Operators. Processes can be defined in terms
of compositions of other processes using the composition
operators. Ultimately, all definitions must ground out to com-

TABLE 1
SUMMARY OF RS CoMPOSITION OPERATORS

1) Sequential Composition: T = P; Q. The process T' behaves like the
process P until that terminates, and then behaves like the process Q
(regardless of P’s termination status).

2) Concurrent Composition:> T' = (P | Q). The process T behaves like
P and @ running in parallel and with the input ports of one connected
to the output ports of the other as indicated by the port-to-port
connection map c. This can also be written as T' = (|;c7 Pi)® for a set
of processes indexed by I.

3) Conditional Composition: T' = P(v) : Q. The process T behaves like
the process P until that terminates. If P aborts, then T aborts. If P
terminates normally, then the value v calculated by P is used to
intialize the process ), and T then behaves like Q..

4) Disabling Composition:> T = P#(Q. The process T' behaves like the
concurrent composition of P and Q until either terminates, then the
other is aborted and T" terminates. At most one process can stop; the
remainder are aborted.

5) Synchronous Recurrent Composition: T = P(v) :;; Qy. This is
recursively defined as P ;;Q = P: (Q; P ;; Q).

6) Asynchronous Recurrent Composition: T = P{v) :: Qu. This is
recursively defined as P :: Q=P : (Q | (P :: Q)).

Operator Precedence: The operator precedence from loosest to tightest is as follows:

Concurrent; Disabling; Sequential;Conditional; Synchronous Recurrent; Asynchronous
Recurrent,

positions of a set of atomic, pre-defined, processes. The set of
basic schemas defines the “building blocks” that can be used
to construct networks, and is discussed later in this section.
There are six composition operators in RS (summarized in
Table I). The first two, sequential and concurrent, are common
to almost any process model. The second two, conditional and
disabling, are pretty much unique to this model. The final
two are simply useful nonatomic combinations of the first
four, used to capture iteration. Formally, process composition
operators are functions that construct a composite automaton
from a set of argument automata [24].

The most straightforward composition in RS is sequential
composition. The process T = P;Q is simply the network of
the process P executed first, and when that terminates, process
Q is executed until it terminates. This is used to enforce a strict
ordering on operations, e.g., Placepari1; Placepgrin.

Concurrent composition indicates that two or more pro-
cesses should be carried out concurrently, e.g., T = (P | Q).
This allows us to represent a lack of ordering between activ-
ities, e.g., (Placepar1 | Placeyyre2), or parallel actions —
actions which need to be done simultaneously, e.g., squeezing
an object obj with two fingers f1 and f2: (ApplyForce 1,065 |
ApplyForces, ;). Two unusual features of this operator
are that it is idempotent and that concurrent processes can
exchange messages using communication ports. The latter will
be discussed below. The former states that all references to a
process P are treated as referring to the same process, not
multiple copies of the process, i.e., (P | P) = P. If we need
to distinguish multiple identical copies, then a superscript will
be used’.

Conditional composition allows the construction of net-
works whose behavior is conditional. The network of T = P : Q
behaves like P;Q iff P terminates successfully. If P aborts,
then Q is not carried out, and T aborts. For example, in

2This is necessary to include nondeterministic processes, e.g., network (6)
in Section V.
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LidOpen,,, : Place; 3o Whether Place is carried out or not
depends on whether LidOpen terminates successfully or not.
This composition can also be used to parameterise the second
process. For example, in Locategare1 (p) : Placep, Locate
might search for an instance of partl and return an instance
pointer p which is used to direct Place to acquire and place
that object.

Disabling composition allows one process to terminate
another. The network T = A#B behaves like (A[B) ex-
cept that it terminates whenever either process terminates.
This captures the logic of a guarded move, for example,
MoveToward,#Contact, where if a contact causes Contact
to terminate this terminates the motion command MoveToward.

The final two composition operators are defined recursively
in terms of these four. Synchronous recurrent composition is
similar to while-loop iteration. Asynchronous recurrent com-
position does not iterate, but rather “spawns” off a set of
concurrent processes every time its “condition” is satisfied.

It is also convenient to introduce a “not” operator. Strictly
speaking this is not a composition operator, it simply changes
the termination status of a process: ~STOP = ABORT and
~ABORT = STOP. However, this simplifies the writing of
conditional statements.

Message Passing. The notation so far allows us to describe
networks of processes with various orderings between them.
However, it does not yet support allowing concurrent processes
to communicate with each other; that is the next step. A port is
a communication object associated with a process. Messages
are written to, and read from ports by a special subset of basic
schemas called communication schemas, described below.
Ports which receive messages are called input ports, and those
which transmit messages are called output ports.

To indicate how ports are connected to one another, con-
current composition has a third, optional argument: a port
to port connection relation. This relation is a set of couples
op +— ip indicating that port ip and op are connected; whatever
is written to op can be read from ip. For example, if the ports
of P and Q were connected by a relation c, the concurrent
composition would be written (P | Q)°. In N = (PO | --- |
Pn)¢, the domain of c is the set of input ports in N and the
range is the set of output ports in N.

Basic Schemas. Basic schemas describe atomic processes
and are the fundamental vocabulary from which process net-
works can be built. We will not be able to describe or analyze
behavior below this level, so it is wise to have basic schemas
implement small, well-defined units of behavior. (Section VIII
describes some basic schemas that we have built to interface
to our robot workcell.)

The set of basic schemas is partitioned into basic sensory
schemas, basic motor schemas, and basic task schemas. Task
schemas are those that perform internal computation. The com-
munication schemas alluded to earlier are examples: 0UT, ,,
synchronously writes value v to port p and then terminates,
and IN,(v) syncronously reads a value from p and can pass
it on via conditional composition in v. Sensing and motor
schemas delineate the interface between a controller and its
environment. An example of a motor schema is Joint;,
which results in robot joint i being set to position v. An
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TABLE 11
LisT OF RS BaSIC SCHEMAS

1) STOP terminates successfully immediately on creation. It has no ports
and takes no parameters. Formally, STOP is mapped to an automaton
that has a null transition map and whose start state is one of its
termination states [24].

2) ABORT terminates unsuccessfully immediately on creation. It has no
ports and takes no parameters.

3) INF never terminates once created. It has no poris and takes no
parameters.

4) INp{v) reads its input port p and can pass on that value in v if used in a
conditional composition. It terminates as soon as the value is read. This
schema implements full synchronous reception of messages on port p.

5) OUTp,y writes the value v to its output port p. It terminates once the
write has completed. This schema implements full synchronous
transmission of messages on port p.

6) DELAY. terminates after a period of duration tmeasured according to
some universal clock.

7) TERM terminates successfully after waiting for a period of unknown
duration.

8) SELECTy,4(v) selects a value v € N with probability given by the
distribution ¢ over IV and then terminates successfully, allowing the
value generated to be passed on using composition.

9) EXISTSs(pi,p2,---) will terminate iff an instance of schema S exists.
The results p1, p2, - - are the values of the parameters of the instance
of S.

example of a sensory schema is BLOB(z, y) which returns the
coordinates z, y of some blob b in a camera image. Plans are
constructed by linking sensory schemas to motor schemas via
computations performed by task schemas. The set of general-
purpose basic schemas shown in Table II will be assumed
in the remainder of the paper and will be augmented with
problem specific schemas as necessary.

A. The Mixed-Batch Kitting Problem

We now construct a robot program to address the mixed
batch kitting problem introduced in Section II. We assume
the following basic schemas: Locaten,(p) does a sensory
search of the environment for an object of class m and
terminates returning a pointer to it in p when it is found®.
Place, acquires and places part p in the assembly kit.
We will specify the sensory search for, and placement
of, a part a as follows, Locate,(p) Place,. The
conditional composition operation “:” links the two basic
processes so that part a is searched for and then placed.
We will abbreviate the object model names as follows: ¢
for the TRAY, ml for MOTOR1, m2 for MOTOR?2,
sc for SWITCH.SOCKET, sl for SWITCH1, s2 for
SWITCH?2, and sds for SEALED.DOUBLE.SWITCH.

The placement of the tray and ore of the motors is specified
as follows:

Partl = Locate;(p) : Placep;
(Locate, (p) # Locatena(p)) : Placey. (2)

The sequential composition forces the tray ¢ to be placed first,
when and if it arrives. The disabling composition between the
processes to locate m1 and m2 ensures that as soon as either
part is found the place is triggered.

3gee Section VIII for a note on our implementation of this; Section VII
will present the formalization of the effects of this process.
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Choosing between one or more actions depending on con-
ditions is handled by using the idempotance of concurrency.
A choice of actions Ai, i« € I each depending on conditions
Ci has the following structure:

(]| Ci:ad)|( # ci). (3)
el i€l
The disabling composition ensures that only one condition
is taken; the first one to terminate. That condition is then
the only one to trigger an action from the set of condi-
tional compositions; all the other conditional compositions are
aborted when their conditions are aborted. (If the conditions
are mutually exclusive, e.g., an IF-THEN-ELSE statement,
then the disabling composition is not necessary.)
The conditional choice of sc followed by the two switches
or the sealed version sds is implemented as follows:

Part2 = (Locate,(p)#Locate,q, (p)
| Locate,q, (p) : Place,
| Locate,.(p) : (Place, ;
(Locateg (p) : Place,
| Locate,z(p) : Placey)).
) “4)

Again the disabling composition forces one of sds or sc to
be found, and aborts the locate of the other. But note that
in aborting the other locate process, by idempotence, the
conditional compositions that refer to that process are forced
to terminate. For example, if an instance of part sds is found
the following events occur: Locate,q,(p) terminates, forcing
Locate,.(p) to abort, this forces the Place in Locate,q,(p)
to trigger, and the entire composition Locate,(p) : (---) to
abort. In the case that an instance of sc is found, then it is
placed. The concurrency in subsequently searching for, and
placing, s1 and s2 means that these operations will be done
in whatever order the environment enables. The full program
is Plan = Parti;Part2.

It is not possible to describe the behavior of this plan in
any concise way without referring to the environment in which
the plan is being carried out. The appropriate unit to analyze
therefore, is'a plan embedded or situated in an environment.
However, to do that, we need to have a formal way to represent
environments. Qur approach is to use RS to build models
of the environment. We call these world models. In the next
section, we describe how the same notation we have used to
build plans can also capture models of dynamic and uncertain
environments.

V. UNCERTAIN AND DYNAMIC WORLD MODELS

By an uncertain environment, we mean one in which there
is uncertainty about whether or not an event will occur,
how many times and when it occurs, and what numerical
parameters are associated with it when it does occur. By a
dynamic environment, we mean one in which change occurs
as time passes. Sanburn and Hendler's [33] “Traffic-World” is
an example of a dynamic and uncertain environment. In that
domain, an agent tries to cross a road against a stream of traffic

travelling at unknown, and dynamically changing, velocities.
The traffic contains three sorts of cars: cars that try to avoid
the agent, cars that ignore the agent, and cars that try to hit the
agent. The agent is unaware in advance of the arrival times,
quantities and types of the cars. We now show how RS can
be used to capture such an environment.

An instance of TERM is a process that terminates at some
unknown, finite time ¢ after it has been created. We can
represent the fact that event X will happen at some future
stage as the composition TERM; X. The SELECT basic schema is
used to model uncertain parameter values. We can use SELECT
to provide initial parameter values v to X.

TERM ; SELECT v 4(v) : X, 5)

At some arbitrary time ¢ after this network has been started, it
will produce the process X, with n chosen from N according
to ¢. However, if we want the values of the parameters of X to
change dynamically (e.g., the velocity in Traffic-World cars)
then we need a recurrent process (see below).

The fact that event X may take place at some future time
is represented as*

(TERM! : X)#TERM? (6)

where TERM? could terminate at any stage and thus abort the
potential to have X occur.

An aperiodic, but repeated event is represented as TERM :; X.
The DELAY process would be used instead of TERM to represent
a periodic event. A car in Traffic-World, for example, would
be represented as: :

Cargy ¢t = (SELECTV',Q-,,, (‘U) l SELECTTI¢t(t)) 3
(Drive, # DELAY,). N

This process maintains velocity v for time ¢ using the distribu-
tions ¢v and ¢t to choose values. The process TERM :: Car gy, 4
would at random times create a Car process whose driving
behavior was governed by ¢ and ¢t. Sanburn’s different types
of cars can be built by choosing different values for ¢v and
¢t. However, for cars of type three (cars that try to hit the
agent) the values of ¢v and ¢t need to be a function of the
agents current position.

A periodic event of unknown period would be represented as

SELECTyy,4(t) : (DELAY, 3;X) (®)

where N' and ¢ can be used to capture the uncertainty
quantitatively if this data is available. We can represent the
fact that an event will occur between time bounds tmin and
tmaz as follows:

DELAYtmin; (DELAtha.z—tmin #TERM); X. 9

The event is forced to happen at a time later than tmin. TERM
can force the event to occur at any point up to tmaxz, at which
point the second delay process forces the event to occur.

*Since TERM is nondeterminstic, we need to use superscripts to distinguish
the multiple identical copies in this example.
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VI. ANALYSIS OF BEHAVIOR

Formal analysis provides us with an objective tool for
evaluating the behavior of a plan in an environment. We
argue that this is particularly needed in the case of action
plans which operate in an uncertain and dynamic environment,
since the complexity of interaction between world and plan
may lead to nonintuitive plan behavior. The two main tools
we develop for this analysis are the evolves operator, to
express how networks change over time; and the algebraic
properties of the composition operators (i.e., what operators
distribute over what others, etc), to allow us to “rewrite”
process networks in alternative equivalent forms (e.g., to
simplify network descriptions). The composition operators
were designed specifically to have straightforward algebraic
properties, and we will not spend much time on them here.
Appendix I contains a full description. The emphasis in this
paper is on the use of the process evolution operator to explore
the interaction of plan and world when both are modeled in
RS.

A. Process Evolution

To analyze how world models or plans execute over time,
it is important to be able to derive how process networks
evolve as component processes dynamically terminate or are
created. To this end, we introduce the evolves operator. We
say that process P evolves into process Q under condition (2 if
P possibly becomes equal to Q when condition §2 occurs; we
write this as P — Q. If there is a set of processes to which P
can possibly become equal on condition ¢, then P necessarily
becomes equal to exactly one of these when ¢ occurs. To apply
this operator, we need to associate with each basic schema P
the conditions under which it stops, 2P. In some cases, we
will also need to discuss the conditions under which a process
aborts itself; these necessary (but not sufficient’) conditions
we write as UP.

A network of processes can also unconditionally evolve, For
example, a network of an input process and an output process
on connected ports p and p unconditionally evolve to effect a
transfer of the message:

(OUT,,, | INs(z) : Ap)°—A, where c:p—p.  (10)
This formula axiomatically describes synchronous communi-
cation in our model.

We start by defining single-step evolution; this captures the
concept of the very next single process creation/termination
change that a network can undergo. For example, a sequential
chain of processes T = P1; P2, where P1 and P2 are basic, can
only change as follows

PI, PQQP];.Y;UPI

P2,

In this fashion, we can define the way in which evolves
interacts with all the composition operators. Appendix II
contains the full description of this interaction.

5 A process can also be forced to abort, but we will see how to include
those conditions later.
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A specific network P might be capable of more than one
possible next evolution. We define the set of next possible
evolutions as

poss(P) = {(c,Q) such that P5Q}. (11)

In general we will be interested in the ultimate effect of a single
chain of successive one-step evolutions. Thus, we define the
evolves operator as the transitive closure of a chain of one-step
evolutions:

Ry e e ey e e

where ¢ = ¢l.c2.¢3 -+ - .cn. (12)

‘We write temporal ordering of conditions using a period, e.g.,
A.B is read A then B. Notice that if a network composition
terminates, then either all the processes terminated together,
or they terminated in some arbitrary order. For convenience,
we will write the termination condition of a network of
processes as the disjunction of all orderings of the termination
conditions. For example, for a network of two processes
(A | B) the (successful) termination conditions would be
(Q2A.0B) Vv (2B.QA) V (024 A QB). For convenience, we will
define a function 7 (€24, (2B, - - -) that maps a set of conditions
onto the disjunction of all their orderings.

The set of all possible evolutions is the transitive closure
of poss(P) over the one-step evolves operator (analogous to
the concept of “reachability” and the “reachable set” in linear
systems theory). We can define this recursively in terms of
one-step evolution as “every network that can be reached in
one evolution plus everything that can be reached from there™:

poss™(P) = poss(P) U ( U {(c.¢,Q) such that
(¢,Q)Eposs(P)

(¢,Q) € poss™(Q)})
or, equivalently, in terms of the transitive evolves operator as:
poss*(P) = {(c,Q) such that P - Q.}

(13)

For any interesting robot plan, this set is at least huge, and
often infinite. Much of our work will be involved in trying not
to have to calculate this.

B. Process Limits

A bound process is a process such as STOP or ABORT or INF
that does not evolve into anything else. These processes are
interesting because if they occur in a chain of evolutions then
they immediately “cap” that chain. We can use this idea to
define the notion of a limir for a process: A limit is a process
that has evolved from the initial process, but cannot evolve
any further. The significance of the limit is that it prevents
any further change of behavior by the process. Any process
may have zero or more limits; we call the set of limits of a
process P, limitset(P).

(c,Q) € limitset(P)
1) P — Q,and

2) there exists no (er,R) st.Q == R

A subset of the limitset of a process is the set of STOP or ABORT
limits. These limits indicate that not only will the process no
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longer change its behavior, it is now additionally stopped or
aborted. The conditions under which this occurs is captured
as follows:

endconditions(P)
= {c such that (c, STOP) or (c, ABORT) € limitset(P)}

We have already made the point that poss* is difficult to
calculate. Yet, the limit definitions seem to demand this calcu-
lation. In practice, we are relieved of this problem because it
is possible to determine for some networks what their limitset
or periodic behavior is from their composition structure. We
call theorems that establish this relationship, limit theorems.
Appendix IV contains a list of seven useful limit theorems
and their proofs. We will refer to these theorems as we need
them in the remainder of the paper.

Note: We will make frequent use of recursive process defi-
nitions. This style naturally leads to considering the periodic
behavior of processes. We say a process P is periodic if it
“reinvokes” itself in all possible evolves chains. Appendix III
contains a more formal definition of the recursive, periodic
and semiperiodic behavior of processes.

C. Plan and World as a System

To analyze the interactions of a plan, Plan, and a model of
the environment, World, it is necessary to somehow combine
them so that they can interact. This composition needs to allow
both processes to proceed asynchronously and concurrently
except for those occasions where they influence each other. We
follow the discrete-event control literature [11] in considering
the controlled system of plan and world as the concurrent
composition of the plan and world processes (Plan | World).

In a concurrent network

N = | P
i€l
any one of the concurrent processes, e.g., P*, k € I is referred
to as a component of the network, and with respect to any one
process, the others P* are called the co-network or
iel—

simply co-net. A key gnr{tk }of this work is that it involves the
analysis of plan and world as coupled concurrent processes.
In the case of plans that reach a limit process, it will be useful
to determine the nature of the world process when the plan
process has reached a limit. We define a limit co-net of a
concurrent network with respect to one of its components as
the co-net remaining when that component has reached a limit
process. In particular, we define the stop co-net, scn() as

BCTL(P, N) = (C, R)
1) P is a component of N, and
2) N=(P|Q) — R for c € endconditions(P)

and the set of scn(P, N) of a network with respect to a process
is called the scnset(P,N). The scnset forms the basis of the
methodology we introduce to analyze plan and world interac-
tions. In the next section we will re-introduce the mixed-batch
kitting example, and develop some straightforward techniques
for computing its scnset.

Note: In the case of processes that are periodic rather than
once-off, the appropriate analysis would concern the scnset()
of the periodic component of the plan process with the world
model.

VII. ANALYSIS OF THE MIXED-BATCH KITTING EXAMPLE

Let us return to the mixed batch kitting plan of Section
IV-A: There are two questions we want to ask of the plan
behavior:

1) Will it construct all and only all four variants?

2) Will it behave opportunistically?

The first is called a liveness property, it asks whether the plan
will achieve a stated objective, and the second is called an
efficiency property, it asks how well the plan will achieve a
stated objective. :

World Model: We start by building a model of an environ-
ment where any of the parts can be delivered to the robot at
any time. We model the fact that a part is delivered to the
robot at arbitrary time as TERM :: Part,, where m is one
of Parts = {t,m1,m2, sdc, sc, s1,s2}. The complete world
model is

Winit = TERM :: Part,,
meEParts

(14)

meaning that any instance of the parts can arrive at any time
(and thus they can arrive in any order). Note that there could
be multiple instances® of each Part,,. Over time, as parts
“arrive,” this world model will evolve to include Wfin, a
network consisting of instances of the Part,, schema:

Winit" 2% (Wt iny | Winit)

Wiiny = Part;
i€V CParts
The effect of carrying out a Place,, operation on a part will be
modeled by the Placed,, process, indicating that that part has
been inserted into the assembly kit. The result of assembling
some variant of the assembly kit requiring the subset of parts
V' C Parts is a process Assemy, where

(15)

Assemy = | Placed;.
i€V

(16)

Sensory-Motor Interface. We now have our plan (from
(2) and (4) in Section IV-A) and our world model (from
(14)—(16)), but we haven’t indicated how they interact. The
relationship between Locate and Part, and between Place
and Placed needs to be formalized.

The connection between Locate and Part can be captured
using the basic schema EXISTS as

Locatem, (p) = EXISTSpare,, (m). (17)

That is, the Locate process in the plan will be “triggered”
whenever Part processes occur in the world model. This
defines the sensory interface for the plan.

The desired relationship between Place and Placed is that
carrying out a Place should result in the object being placed;
represented here by an instance of the the Placed schema. We

6We could assign a unique name to each instance of each of the part models
which arrive; however, this is not necessary and complicates the analysis.
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TABLE III
THE Snet SEGMENTS FOR THE MIXED BATCH ASSEMBLY PLANT

Snetl = (A .Locate;(p) : Placey)

Snet2 = (USnetl ,(Locateml(p)#Locatemg(p)) : Placep)

Snet3 = (USnet2 ,(Locatesc(p)#Locate,d, (p) | Locate,qs(p) : Placep | LPsc))
Snetd = (ULPs. ,(Locate,i(p)|Locates: {p) : Placep|Locatesz(p) : Placep))

In the above, m € {ml, m2} A indicates the empty (always true) condition, and LPs. = Locate,c.

define an addition to the world model that is “triggered” by
instances of the Place process:

Placelaw = EXISTSpiace.. (P) i (Delaytp;Placedp) (18)

where tp is a (constant) time value, modeling a fixed time
taken to carry out the place motion. The principle purpose of
Place is to have the effect of triggering the Placelaw process.
Therefore, Place does not have to do any internal processing.
It could simply be defined as STOP. It seems more appropriate
however, to define it as a delay of time #p:

Place, = Delayy, (19)

The two networks, (19) and (18), interact together to achieve
the following:

(Place, |P1acelaw)ti"-w—(fp)(1’1acedx | Placelaw). (20)

This can be easily verified by algebraic substitution and
application of the evolves definition. The details are presented
in Appendix IV. Equation (20) defines the motor interface for
the plan.

Note that we could have used message-passing, instead
of EXISTS, to implement the sensory-motor interaction. In
general message-passing is a more realistic tool. EXISTS
was chosen here because it yields a shorter analysis for this
problem.

There is now sufficient detail to use the evolution operators
to “simulate” an execution of the plan and determine what
effects it produces on the world model. While this is a useful
exercise (the details are presented in Appendix V), it will only
tell us about one possible way the plan can be executed. To
satisfy our liveness question, it is necessary (0 be able to say
something about the result of all possible execution sequences.
For this we use the scnset concept developed in the previous
section.

The Liveness Question.The plan is designed to terminate
once one assembly variant has been kitted. Thus, we are
interested in the stop co-net of (Plan | Worldp) with respect
to Plan, where

Worldy = (Winit | PlaceLaw | Wfiny). 20
The stop co-net — the world model process once the plan has
terminated — should contain all and only all valid assembly
variants. The only conditions necessary for achieving a variant
should be that all the parts for that variant have arrived and
that a sufficient amount of time has elapsed. Let VV C glents
be the set of the four valid variants. Our liveness question can

TABLE IV
THE LIMITSETS OF THE MIXED BATCH ASSEMBLY Snets

limitset(Snetl) {(3Part,, Placet)}

limitset(Snet2) = {(3Partmi,Placemi), (IPartmz,Placens)}
limitset(Snetd) = {(HPart,,c,Place,c).(BPut,d,,Place,ds)}

limitset(Snetd) = {(ﬂ'(EPm,l,BPMSQ),(Place,;IPlacc,g))}
be phrased as

(time(t), (Worldy | Assemy))
€ scnset(Plan, (Plan | Worldy))

— VeVVandV CU C Parts. (22)
If we attempt to calculate the scnset by looking directly
at poss*(Plan | Worldy) then we will have to explore all
the internal evolutions in both the plan and world models. It
would be simpler if we only had to explore those evolutions
in which the plan influenced the world or vice-versa. Plan
and world processes only interact through the sensory-motor
interface. (We have already identified this boundary for the
kitting example).

The "Transfer Process” Approach: A transfer process TP
for a process P is a process in which all the internal evolution
steps of P have been transitively closed between the sensory
and motor interfaces. The transfer process is then analogous
to the usual transfer function of linear systems theory in that
it provides an input-output view. Investigating the concurrent
composition of the transfer functions TP1an | TWorld is easier
than investigating the composition Plan | World because only
poss(), not poss*() needs to be examined, since the only ele-
ments of poss() are the direct interactions of plan and world.

The transfer process is used in the remainder of this ex-
ample as follows. Rather than producing TP and TW, the
limit theorems of Appendix IV are used to derive poss(TP)
and poss(TW), which are the more useful quantities. A short
algorithm is then presented to derive the scnset from these
two quantities.

The Plan Transfer Process, TP: The sensory-motor interface
for the mixed-batch kitting example are the processes Place
and Placed, and Locate and Part. To determine poss(TP)
it is necessary to determine how the plan effects a linkage
between Locate and Place processes. We accomplish this
by “cutting” the plan into sensory-motor segments. That is,
we will divide up the plan into segments by determining
which Locate process affect which Place process. We can
do this by tracing the parameter dependancy of a Place,
terminating when ever we get to a Locate. We call the
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TABLE V
A LISTING OF scnset(Plan, (Plan|Worldy))

scnset(Plan, (Plan | Worldy))

scnset(TP, (TP | TW))
{ (3Part,.3Part,,;.3Part, 4, (Worldy, | Assemy,)),

(3Part,.3Part,,;.3Part,y,, (Worldys | Assemys)),
(3Part,.3Part,,,; 3Part,..x(IPart,,, JPart,,),

(Worldys | Assemys)),

(HPart, .BPutmg.HPut,e.W(BPartn i 3?&:’1:,3),

(Worldy, | Assemyy)) }

where Vic Ui f.:ng_l/:jg VV.

resultant network the Snet (sensory network) of that Place
process. Any processes or composition operators encountered

between the motor and sensory processes are included into the .

Snet. This segmentation is straighforward to implement (see
the algorithm in Appendix VI.)

With each Snet we associate a condition, which is the least
condition necessary for this segment to begin execution. If we
carry this segmentation out on Plan we get the four Snets
shown in Table IIL. To calculate the poss(TP), we need to
look at the limitsets for these Snets under the assumption

that Place is a bound (since we're interested in the set of

next placement actions the plan may produce). Using the limit
theorems these can be derived as shown in table 4.

World Transfer Process, TW: The Snet segmentation algo-
rithm need not be applied to the world model, since it is
already phrased as separate sensory-motor segments. As in
TP, poss(TW) is determined by looking at the limitset of the
segments.

Place affects the world model through Placelaw. The
limitset of Placelaw is constrained by theorem 5 as follows:

{(3Place,,,Placed,,) such that m € W C Parts}

C limitset(Placelaw) (23)

where we adopt the notational convention QEXISTSpiace,, =
JPlace,,. Since we can’t say how often or with what part
Placelaw will be triggered, we can only say that W C Parts
parts could end up placed.

The sensory process Locate is essentially just a test for an
instance of Part, QLocate,, = 3Part,,. Winit is the only
part of the world model that can generate Part instances. The
limitset of Winit is also constrained by theorem 5 as follows:

{(time(t), Part,,) such that m € Parts,t > 0}

= limitset(Winit) (24)
where QTERM = time(t),t > 0 and since for any t1,¢2 there
exists a t3 such that time(t1).time(t2) = time(t3).

We now have everything we need to verify property (22):
poss(TP) is specified by Tables I1I and IV, and poss(TW) by
equations (23) and (24).

Calculating scnset(TP,(TP | TW)). The scnset can be
calculated by repeated application of the following three steps
which compose the effects of the two transfer processes.

|
|

TABLE V1
VARIANT ASSEMBLY CONSTRAINTS

G t |ml|m2|sc|sl|s2]|sds| done
] 1] & g o Lele ] o 0
t i ] gyl gl e 0
t,m" g 0 o 0
tm*sds [0 | 0 ¢SO IR S T (T T 1
tmtse Q] B 0 A G L e | 0 0
t,m*sc,sl (0| O g il L0 0
t*ses2l0] O T I 0
tamises” 0] 0 A EE YR i

This table defines the assembly kitting constraints for the variant assembly kit example
as a function C(row, column) returning 1 iff that column entry can be placed once
the assembly kit is the state indicated by the row. For example C(t, m1) = lindicates
that m1 can be added iff the tray is in place. By m™ and s* we denote either m 1 or
m2 and either a1 or s2. The constraint C(state, done) =1 iff the assembly kit is
finished.

1) Determine which Snet segment, Sneti, of the plan is
enabled (Table III; initially only A holds). Terminate if
no segment holds.

2) Determine from poss(TW) (24) and limitset(Sneti)
what poss(TP | TW) will result.

3) Use poss(TW) (23) to determine the effect of this on the
world.

The scnset for this example is shown in Table V. By (24),
JPart,, can be simply replaced by time(t,,). Note also that
a succession of times ¢1.t2.t3--- or a permutation of times
m(t1,82,¢3,---) can always be simplified to a single time
value. Give these two facts, Table V collapses to (22). Note
that we haven’t addressed the correctness of the component se-
quence in this example. This can be addressed by considering
the sequence of conditions in the scnset.

The Opportunism Question. Any assembly will have asso-
ciated with it a set of constraints that minimally order the
assembly actions based on geometrical and stability reasons.
These constraints are captured for the kitting example as a
function C(S,¢) = 1 iff the kit is now in state S and
component ¢ can be added to it (see Table VI). The state of the
kit can be simply represented by the set of parts placed so far.

Opportunism can now be defined as the property possessed
by the plan P if all next possible actions of TP when the world
W is in some state S(W) match exactly those specified by the
assembly constraints C' for this state and if the remainder of
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the plan is also opportunistic. We write this formally as

OPP(TP, TH) <= [YeIC(S(T),c) = 1]
& (time(t), (Ac; TP | TW)) € poss(TP | TW) A OPP(TP, TW))

where A, is the motor action to which C(S, c) refers; in our
example this is Place,, where p € Parts.

We can verify that the mixed batch assembly plan obeys
this definition of opportunism by using the same three-step
iteration used for liveness, but with step two is augmented as
follows. For each nonzero entry in C, C(S(W),c) = 1, there
must be an appropriate entry in poss(TW | TP) that indicates
that the action Place.,¢ € Parts is a possible next action
of the plan transfer process: (tz’me(t),(Placec;'fP | TW)) €
poss(TW | TP). Furthermore, such actions should be the only
possible next actions. Tables 3 and 4 can again be used to
calculate poss(TW | TP) in this step. Straightforward repetition
of this augmented three-step loop shows the mixed batch
kitting plan is indeed opportunistic.

VIII. IMPLEMENTATION ENVIRONMENT

We have constructed a robot workcell to explore the use of
RS in robot action planning in the kitting domain.

Hardware: A Puma-560 robot equipped with a four-fingered
force-sensing gripper is the basis of the kitting workeell. The
workcell has two cameras: A global camera situated above
the workcell, whose view covers the entire workspace, and a
local camera, embedded in the “palm” of the gripper, whose
view is determined by the position and pose of the gripper.
The remainder of the cell consists of the worksurface and a
conveyer belt on which parts can be introduced or removed
from the worksurface. The kitting task consists of taking parts
as and whenever they come in, putting them into trays, and
shipping the trays out on the conveyer belt.

The Puma’s VAL controller is connected by an RS232 line
to one of a set of M68020 processors on a common VMEBUS.
This processor functions as a robot server processor. It can
issue commands to the robot in two modes: a coarse position
mode (VAL MOVE) and a fine position/velocity mode (VAL
ALTER).

The two cameras are connected to a Philips PAPS industrial
vision system. This system is controlled by another of the
M68020 processors on the common VMEBUS. The processor
functions as a vision server processor. A recognize command
causes this server to scan the image from one of the cameras
and determine if there are any instances of a given set of 2-D
object models in the image.

The RS — L3 System: A subset of the RS model has been
implemented as a robot programming language. The subset is
basically RS as introduced in this paper except that concurrent
and disabling compositions are not idempotent. The RS — L3
programming environment consists of a YACC/LEX-based
parser and a thread-based exector. The parser accepts systems
of process definition equations in a computer-keyboard version
of the RS syntax. It passes on these parsed definitions, as they
are made, to the exector, which executes them as dictated
by the model semantics. Thus, all execution is interpretive.
The exector implements composition, port-1/O, buffer man-
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agement, and scheduling. It uses the SunOS®® lightweight
process library to implement concurrency.

A set of basic sensory and motor schemas has been built to
interface to the robot and vision servers. These basic schemas
run as atomic processes that send command messages to the
servers and return results from them. For example, Locate,,
is a basic sensory process whose implementation (invisible in
RS) continually queries the vision server with recognize(m)
commands, and only terminates when such a model instance
is seen. Domove, is a basic motor process that transmits a
move(p) command to the robot server, and terminates when
that command has been carried out.

Implementation Experience: Kitting examples have been
constructed and run in RS on the kitting workcell as part
of an investigation into combining planning and reaction [21],
[23]. (The system can be seen in action on the 1992 IEEE
Robotics and Automation Video Proceedings.) That work does
not make use of any of the process-based reasoning techniques
described here; it uses RS as a robot programming language.
Nonetheless, it has generated some interesting feedback:

1) Idempotance. This plays an important role in both anal-
ysis and representation, yet it is next to impossible
to implement as described. To be correct, the RS
scheduler must not only ensure that networks such
as (A | A) are unified to A, but also that networks
such as (TERM':A | TERM?:A) unify to A in the
case that both TERM processes happen to terminate
simultaneously. Not only is this difficult to implement, it
can lead to unexpected unifications when it does occur.
This is a serious flaw, since without idempotance, the
representation of choices between actions (e.g., eq. (3))
becomes very difficult. It would be much better from an
implementation perspective to be able to name process
instances and rely on that to define idempotance.

2) Kitting examples of the type described in this paper
generally give rise to from 50 to 100 RS processes when
they are implemented in detail. This does not include
any world description. Such a description is required
for reasoning about the effects of actions but not for
executing the actions. This gives rise to an immediate
problem: 50 to 100 threads (RS is implemented on
top of a threads package) is a heavy computational
load. The problem is relatively easily fixed. Every RS
process does not need its own thread; only parallel or
disabling compositions actually require the creation of
new threads. This change results in very few threads
being created, typically 10 to 15 in kitting examples.

3) Fair scheduling among 10 to 15 threads almost always
ensures that some RS processes do not execute as
often as they need. We have not discussed process time-
constraints in this paper, though we have looked at the
problem elsewhere [20]. For now, we program around
the problem, but it remains a difficulty inherent in multi-
process systems.

®SunOS is a registered trademark of Sun Microsystems, Inc., Mountain
View, CA.
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Automated Reasoning. Our use of the implemented RS
system did not involve the implementation of the reasoning
algorithms presented in this paper. Instead, we chose to
automate planner reasoning about RS networks using an
Interval Temporal Logic (ITL) reasoner [28]. There were
several disadvantages to this approach: Firstly, there was
the problem of having to map between the procedural RS
program and the coresponding ITL constraints [25]. Secondly,
there was the fact that ITL reasoners have to settle for
having either reduced representation power or incompleteness.
Automating the RS analysis techniques of this paper could
potentially bypass both of these issues. The evolves operator
has been implemented in PROLOG, based on the definitions
in Appendix II, but it has not been used in conjunction with
the execution system yet.

A process network is rephrased in prefix notation to simplify
PROLOG analysis: A : B is written colon(A,B), etc. Most
of the implementation is a straightforward translation of the
evolves definition into PROLOG clauses, e.g.,

ev(colon(X,Y),2,c) : —ev(X, STOP, a), ev(Y,Z,b)
¢ = then(a,b).

where the prefix form of a.b is then(a, b). The only difficulty
is in dealing with the effect of idempotance in networks such
as (Err#0per | Err : Rec). Note that if Err terminates, then
Oper is aborted and Rec is triggered; but if Oper terminates,
then Err is aborted and Rec will never be triggered. (This
network captures the logic of error detection Err and recovery
Rec associated with an action or plan Oper.) To model these
effects we use interaction clauses of the form:

ev(Z,STOP,c) : —~Z = net(P,Q),P = colon(X,Y)
Q = hash(X,U), ev(U, STOP, c).

However, without making use of the limit theorems, poss™
boils down to a forward search procedure. The limit theorems
allow the leaves of the reachability tree to be estimated based
not on expanding out the tree (as poss* does), but rather on
the initial structure of the network. As yet, the limit theorem
approach has not been integerated into the implementation
of poss®(), though one straightforward approach would be
to use them to build a set of limit clauses by analogy with
the interaction clauses above. The Snet and scnset algorithms
given in this text have been implemented for simple cases.

IX. CONCLUSION

In summary, producing appropriate behavior in a robot
operating in an uncertain and dynamic environment requires
a plan representation that has both the rich vocabulary of
loops, conditionals, sensory requests and concurrency neces-
sary to represent flexible robot control programs and also a
methodology for formally reasoning about the effects of such
programs in a given environment. This paper has introduced
a process-based representation, RS, to address this problem.
This representation uses a vocabulary of composition operators
and basic proceses to support the description of detailed
concurrent control programs. A version of the model, RS — L3

has been implemented to control an experimental robot kitting
workeell.

This paper presents groundwork for reasoning about process
networks. An algebraic framework has been introduced for
analyzing the interactions between a plan and the environment
in which the plan is operating. A formalization of the ultimate
possible effects of a plan on its environment, the senset,
was introduced. To simplify the calculation of the scnset,
two supporting concepts were introduced: the limitset of a
process and the rransfer process. The limitset of a process
describes the process or processes into which that process
may finally evolve. A set of theorems was also presented
for relating process structure to the contents of the limitset.
Finally, the concept of the transfer process was introduced
to simplify analysis of coupled plan-world systems. These
concepts were then used to explore liveness and opportunism
for a mixed-batch kitting problem.

The main contribution of this paper is that it establishes
the formal groundwork for reasoning about plans described as
concurrent, communciating process networks—a level of detail
simply not possible before. The nearest formal framework
is that of Petri-nets which has been used extensively in
manufacturing and modeling applications [29]. There is an
elegant body of formal theory in place for Petri-nets, some of
which has already been applied to robotic and manufacturing
problems [5], [16]. There are two reasons why we followed a
process-based rather than a Petri-net based approach in this
paper: Firstly, the process-based representation has a freer
and more programming-like style than static sized graphs of
nodes passing control tokens to each other. Secondly, strictly
speaking, Petri-nets are a less powerful computational model
than process models (i.e., the inability to test for a zero
marking in a place) [29]. They gain their formal power from
this simplification. Extensions can be made to Petri-nets to
make them equivalent in power to process models, e.g., timing,
inhibitor arcs, and priorities. However, these result in them
losing their formal power.

Future work in this model involves addressing the following
problems: The error detection and recovery formula discussed
briefly in Section VIII turns out to be very useful but is not
supported by the RS-L3 implementation. We are, therefore,
now investigating the “process instance naming” approach to
idempotance. The limit theorems introduced in this paper offer
a way to calculate even infinite limit sets. Rather than simply
enhancing the poss* algorithm to make use of limit theorems,
we are currently determining if it is possible to build a version
using only limit theorems. This involves determining first if
there is a fundamental set of limit theorems and then how
individual limit theorem results can be combined. The Snet
and scnset algorithms introduced in this paper have been
tested for simple problems such as the mixed-batch kitting
problem; however, their completeness and computational com-
plexity is still being investigated. In conclusion, this paper
has laid a groundwork, both in theory and implementation,
for the representation and analysis of detailed, flexible robot
plans; however, further work is still necessary to refine and
evaluate the ability of the representation to support automated
reasoning.
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TABLE VII
Property Concurrent Cond_/5eq. Disabl.
Closed By definition. By definition. Ry definition.
Associalive IE[cy =((a]B)[c) A:(B:C)=(A:B):C AR(BEC)=(ABBIEC
tive (A]B)=(B[A) A:BFB:A A#B=B#A
Tdempotent. [QDEL A AEA ABA=A
Tdentity {A [ABORT)= A =(ABORT [4) 1:5TOP=A=STOP: A INFEA=A=ARINF
ro None ABORT : A=ABORT#A : ABORT ABORT#A=ABORT=A#ABORT
Subsumes = = (A#B | B#C) = A#BHC
TABLE VIII
Teft-Distributes Concurrent, Cond./5eq. Disabl. |
current —_ - p—
Cond./ Seq. 1. (B|C)=(A:B|A:C) — A (B#C) = (h:B)F#(A:C)
Disabl. — — -
ync/Async. = - —_
Recurr

APPENDIX 1
ALGEBRAIC PROPERTIES

Strictly speaking, processes are only equal when they both
map to the same formal automaton [24). Equality can be made
a little easier than that however. First of all, process are equal
if they are defined so, e.g., Plan = Locate.(p) : Place,.
Another way to find out if processes are equal is to discover
process identities that can be applied to composition expres-
sions. Such identities can be constructed by investigating the
algebraic properties of the composition operations.

The following table summarizes the most important proper-
ties of the composition operators. Communication is omitted
from concurrent composition for technical convenience. Notice
that since no composition operators have inverses, none will
form groups. The strongest structure formed is a commutative
monoid® (network and disabling operations). The rest are
monoids. The disabling operation has an interesting “sub-
sumption” property when used in conjunction with concurrent
composition. (See Table VII).

It is also important to understand how the operations interact
with each other. One important such interaction is distribution.
The following table captures what operations distribute over
other operations (the row distributes over the column).

Note that the noncommutative monoids left-distribute over
the commutative monoids. This means that Cond./Seq. com-
positions form semirings with network and disabling compo-
sition.”

APPENDIX II
DEFINITION OF ONE-STEP PROCESS EVOLUTION

The following definitions capture one-step evolution. All
the processes below are basic.

« p %F STOP (definition of termination condition).

« p %% ABORT (definition of abort condition).
» Sequential: P; an_y’u Q.

+ Concurrent:
— @QTYYP | Q) iff PP andQ ST

8 A monoid is a set operation that is closed, associative and has an identity
element.

7 A semiring is a pair in which the first element is a commutative monoid
and the second is a (usually noncommutative) monoid that distributes over
the first. Semirings occur often in computational mathematics [1].
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== \ Pi -5 ABORT iff all the processes abort, ¢ =
iel
A UPi.
iel
| Pi £, STOP iff at least one process terminates
iel
sgccessfully,
e=( A UPi) A( A QPj),
i€A j€S

where AUS =1, AnS =0and S # 0.
« Conditional:

— P(i) : @ 2 @, and

— P(i) : Q; =5 ABORT

Different behavior on termination versus abortion is what
makes this operator “conditional.”
» Disabling:

— (p#Q)XP'#Q) iff P B Pandq 3 ¥
— 4 Pi - ABORT iff all processes abort.
i€l
— 4 Pi 5 STOP iff at least one process terminates.
i€l
Note that disabling composition can force a component
process to abort. Thus, components of disabling composition
need to have their abort conditions extended (we alluded to
this fact in Section III) to include the cases under which the
network forces them to abort. It is important to distinguish
these (necessary and sufficient) extended conditions UA from
the (necessary) spontaneous conditions UA. The relationship
between these conditions is, for A in a disabling network with
P1,P2,...,

Ua=UAV(\/ (UPVQP)).
Pis£A

(25)

APPENDIX III
PERIODIC PROCESS DEFINITIONS

Informally, a periodic process is one that “repeats itself.”
The simplest definition of such a process is the standard
guarded recursion T = X : T. This process executes one
instance of X after another, until X terminates unsuccessfully
(aborts), if it ever does. In this sense, X is the “period” of the
process. However, since each instance might take a different
time and could exhibit different behavior, it is better to avoid
the word “period”; instead, this will be referred to as the
cycle of the process. In practice, there are a number of useful
varieties of periodicity. We will define four below, depending
on whether a process is entirely repetitive or whether just
some parts of it are repetitive and on whether the process
ever terminates.

Periodic: We define a periodic process as one that can
be written T = X : T. The following test uses evolution to
determine if a process is periodic or not:

recurs(P,Q) < Y(c,R) € poss(P) either
1) Re€ {Q,STOP,ABORT} or
2) recurs(R,Q)
periodic(P) <= recurs(P,P).
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The intuition here is that a process should be periodic if it
“repeats itself.” Part 1) of the definition catches the repetition
(or a termination) when it occurs. Part 2) recursively scans
all evolutions of the process. This branch is taken as long
as we are within the cycle of the process. The definition of
periodic demands that the original process Q should appear
again somewhere in all of its evolutions. It can be easily
verified that T = X : T obeys this definition. In the other
direction, if a process obeys this definition, then its cycle can
be reconstructed by tracing it as it proceeds through the second
branch of the test.

We can split periodic processes up into two kinds: ones
that never terminate, infinite periodic; and ones that may
terminate after some finite number of periods, finite periodic.
An infinite periodic process is one that obeys a stronger version
of constraint 1) in the definition of recurs above: R = Q. A
simple example is the unguarded recursion process T = X;T.
A finite periodic process is a periodic process which does not
obey this stronger definition. An infinite periodic process has
an empty limitset (since it never terminates). A finite periodic
process has a nonempty limitset.

Semiperiodic: A second useful definition to capture is when
the original process appears in some but not all of its own
evolutions. That is, guarded recursions of the form T = X : (B |
T) where X is again the cycle of the process and the process
B isn’t defined in terms of T. To build a test for semiperiodic
we need to define the concept of a subnet of a network. In a
concurrent network

N = | P
el

any network

§= | P
ielS

for IS a proper subset of I, is considered a subnet of N.
(This excludes IS = () and IS = I.)

semirecurs(P,Q) <= ¥(c,R) € poss(P), either
1) Re€ {Q,STOP, ABORT}, or
2) For N a subnet of R,either
a) N=0D
b) semirecurs(N,Q)
semiperiodic(P) <= semirecurs(P,P).

Part 2) of this definition only asks that some subnet of an
evolution repeat; other parts of the subnet can be nonrepetitive.
We can again split this category into two: infinite and finite
semiperiodic, based on whether a process obeys the stronger
version of constraint 1). A semiperiodic process will typically
have a nonempty limitset because of contributions from its
non repetitive components.

It is possible for a process to be nonperiodic and still have
no limits, we call such a process chaotic. If the periodic and
semiperiodic tests given above are applied to a chaotic process,
then they will not terminate.

APPENDIX IV
PROCESS LIMIT THEOREMS

Theorem 1: 1f B is a bound then limitset(A : B) is of the
form {(Q24,B), (UA, ABORT)}.

Proof: By the definition of conditional composition,
poss(A : B) = {(QA,B), (UA, ABORT)}. The theorem immedi-
ately follows since both ABORT and B are bounds. O

Theorem 2: If P is a bound, then limitset((A#B) : P) is of
the form {(UA A UB, ABORT), (A Vv QB, P)}.

Proof: By Theorem 1, limitset((A#B) : P) is of the
form {(Q(A#B),P), (U(A#B), ABORT)}. The abort and stop
conditions of A#B come directly from their definition as
UA A UB and QA V OB respectively. =

Theorem 3: If X and Y are bounds, then limitset((A#B |
A:X|B:Y)) = {(A,X),(0B,Y),(UA A UB, ABORT)}.

Proof: This can be shown using the above two theorems
and an enumeration of the cases for poss. The only difficulty
lies in the case where both A and B stop simultaneously. One
might expect the network (X | Y) to happen in this case.
However, the definition of # was written to specifically forbid
this option: the options for # are to have all processes abort,
or to have exactly one stop and the rest abort. The result in
this case is to generate nondeterminism as to which process
will abort, and so as to whether X or Y will be produced. [

Theorem 4: If B is a bound, A :: B is semiperiodic. It is
infinite-semiperiodic if UA does not exist; finite-semiperiodic
otherwise.

Proof: Expanding A :: B we get T=A: (B | T). Let us
apply semirecurs(T,T). poss(T) contains only (UA, ABORT)
and (QA, (B | T)). Let R1 = ABORT and R2 = (B | T). Part
1) catches R1. The subnets of R2 are B and T by definition.
B does not obey part ii.a or ii.b of semirecurs. T however
obeys ii.a. Since the definition only requires that one subnet
obey part 2) (i.e., that there be one subnet that repeats), this
demonstrates that A :: B is semiperiodic. O

To determine if A :: B is infinite, we need to see if it obeys
semirecurs with the stronger version of part 1). Applying
semirecurs(T,T) again we note that if UA does not exist,
then only (24,8 |T) is in poss(T). In that case, only part
2) of the definition is needed to demonstrate that A :: B is
semiperiodic. Therefore, if UA does not exist, then A :: B is
infinite semiperiodic. If UA does exist, the (UA, ABORT) is also
a member of poss(T) and this causes the stronger version of
part 1) to fail. In that case, A :: B is finite semiperiodic. [0

Theorem 5: If B is a bound then limitset(A :: B) has ele-
ments of the form (c, B), where ¢ = QA™,n > 1.

Proof: The previous theorem demonstrates that A :: B is
semiperiodic if B is a bound. The nonperiodic branch is the
only way elements can be added to the limitset. Expanding
A :: B as before, we get T = A : (B | T). The nonperiodic
branch is B, and is produced once for each recursion. The
condition for each recursion is simply QA. Thus limitset(T)
will contain couples of the form (A, B), (24.Q4,B), -- -.

Note: 1f T is finite semiperiodic, then the limitset will
additionally contain couples of the form (2A™.UA, ABORT) for
n>0. O

Theorem 6: A :;B is periodic. It is finite-periodic if UA
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exists, and the limitset is of the form {(c, ABORT) | ¢ =
QA" UA,n > 0}.

Proof: Expanding T = AzBwegetT=A: (B;T). It is
straightforward to verify periodic(T)-

Let us assume UA exists. Then poss(T) has two elements
(U, STOP) and (QA,B;T). The B; T element satisfies part 2)
of both the infinite-periodic and periodic definitions. The STOP
only satisfies part 1) of periodic; it will not satisfy the stronger
part 1) constraint for infinite-periodic.

The only way that elements can be added to the limitset
is via the (UA,STOP) element of poss(T). If this happens the
first time through the definition of periodic, then (UA, STOP)
is added to the limitset. If it happens the second time (i.e.,
on the first recursion through part 2) then (QA.UA,S’I‘DP) is
added; the third time, (QA.QA.UA,STDP), etc.

Theorem 7: If P is infinite-periodic (infinite semiperiodic)
and Q1 exists, then T = I#P is finite-periodic (finite semiperi-
odic). I#P has a limitset of limitset(P) U {(QI,ABORT)}‘
If UI exists, then limitset(I#P) additionally has the couple
(01, ABORT).

Proof: The poss of T = I#P contains three options:
either I aborts, I stops, Of P starts its periodic (semiperiodic)
recursion. This is directly the definition of finite periodic (finite
semiperiodic). The only extension I makes to limitset(P) is
to add its termination conditions.

APPENDIX V
DETAILED EVOLUTION OF THE PLACING NETWORK

In the text we make the following assertion without proof:

(Place; | Placelaw)tiﬂp)(Placedz | Placelaw) (26)

Here is the detailed proof which uses a straightforward ap-

plication of the algebraic definitions of Appendix I and the
evolution definitions of Appendix 1L

(Placeg | Placelaw)
= (Place, | ExistSpiace, {p) = (Delaytp;Placedp))
—»  (Placeq | (Delaytp;Pla.ced,,) | Placelaw)
= (Delay,, | (Delaytp;Placedx) | Placelaw)

time(tP)  (p)aced, | Placelaw). @7

If the plan and world processes are defined as in the main
text, then the complete detail of the placement of the first part
(the tray) can be deduced as follows. Let us consider the first
part of the plan and the salient part of the world as

plan = Locate:(p) : Placep; QP
World = (Winit | Placelaw) (28)
Winit = (TERM: Part: | QW)

where QP and QW abbreviate the rest of the plan and world,
for the purposes of this exposition. While this is correct for
QP it is not generally correct for QW, since the world can
change asynchronously as the execution of the plan proceeds.
However, in this example, because the only way the world can
affect the first placement in the plan is via the occurrence of

the tray, the simplificiation does hold. Using the definition of

5

evolves and (15), (27) from the world model definition, W€
can trace the following chain of evolutions:

= (Plan | World)

= (Plan | Winit | Placelaw)

= (Locates(p) : Place,; QP |
TERM :: Part, | QW |

System

Placelaw)
st (Locate(p) : Place,;QP | By (15)
Part; | QW |
Placelaw)
., (Placey;QP| By (17)
Part, | QW |
Placelaw)
i (- By (20)
Part, | QW |
Placed; | Placelaw )
(29)
APPENDIX Vi

SNET SEGMENTATION ALGORITHM

The following algorithm will cut a network, phrased as a
string of processes and composition Operators, into a set of
sensory motor subnetwork segments. The algorithm handles
communication links. Exists links can be handled in the same
way, but are omitted here for clarity. The algorithm expects
the motor process to be the rightmost element of any network
or disabling composition®.

We make use of the following variables and functions: Cur-
rentProcess is the process in the network currently under con-
sideration by the algorithm. NextProcess and NextCompOp
refer to the next process and composition operator to the right
of the current process in the network. variables(), Results()
and Ports() are functions which produce the set of parameter
values, the set of port names oOf the set of result names of
a process. UnresPar will be the set of parameters whose
dependance has not yet been resolved, and UnresCom will
be the set of communication ports whose dependance has
not yet been resolved. For each motor process, the algorithm
steps through the network starting at the motor process and
terminating when all processes which are the sources of
variable and port references necessary to parameterize that
motor process have been included in the Snet subnetwork for
that motor process.

For each motor process i Do

CurrentProcess « motor process i
Snet; — CurrentProcess
UnresPar «— Variables(CurrentProcess)
If CurrentProcess € {IN, oUT}
Then UnresCom«—UnresCom+
Ports(CurrentProcess)
While UnresPar and UnresCom not empty Do
Case NextCompOp Of
#or;
CurrentProcess < NextProcess
include NextProcess in Snet;

8 Operating on a parse tree sather than a string would remove this restriction.
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UnresPar — UnresPar+
Variables(CurrentProcess)
Ll
CurrentProcess — NextProcess
include NextProcess in Snet;
UnresPar «— UnresPar+
Variables(CurrentProcess)-
Results(CurrentProcess)
| (with port to port communication map c)
If UnresCom is mapped by ¢ onto
Ports(NextProcess)
Then include NextProcess in
Snet,-
UnresCom « UnresCom -
c(Ports(NextProcess))
Else skip over NextProcess
End Case
If CurrentProcess € {IN, 0UT}
Then UnresCom«—
UnresCom+Ports(CurrentProcess)
End While
End For
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