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A Formal Model of Computation for
Sensory-Based Robotics

DAMIAN M. LYONS, MEMBER, IEEE, AND MICHAEL A. ARBIB

Abstract—Almost all attempts to construct special-purpose robot
programming languages have proceeded by taking a computer program-
ming language and adding some special primitives. We have taken the
unique approach of trying to define computation at its most primitive
level in terms of the characteristics of the robot domain. We construct a
special model of computation, called ®S (Robot Schemas), with properties
designed to facilitate sensory-based robot programming. Our ap-
proach offers the potential to construct robot task representations which
are easy to use, concise, and which execute in an efficient manner. We
define the model formally using port automata. These definitions ensure
consistency and well-definedness, but they also facilitate plan verification
and automatic plan generation.

I. INTRODUCTION

NE COMMON approach to robot programming is to use

a general-purpose programming language [12]. This has
the advantages that such languages are well understood, they
offer a large array of control and data structures, and they can
be quite portable. Another, complementary approach is to look
deeply at what is unique about robot programming, and try to
develop a model of computation based solely on these
characteristics. We adopt the latter approach because it offers
the potential to construct task-level specification mechanisms
which are easy to use, concise, and which execute in an
efficient manner.

We argue that this approach has never been attacked deeply
enough; many so-called special-purpose robot languages are
conventional programming languages with some new data
types and procedures (e.g., VAL [31] and Basic, AL [26] and
Pascal). Other special-purpose languages provide insight into
the nature of task-level specification [18], [20] but do not
address conciseness or efficiency of execution. Our goal in
this paper is to formalize the key computational characteristics
of robot programming into a single mathematical model, not
to come up with a specific programming language. We offer a
model of computation based completely on the characteristics
of the robot programming domain. This work provides a
“‘deep structure’’ for subsequent program or plan representa-
tion languages.
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The approach offers the potential of direct task-level
specification (easier for humans to deal with, and automatic
planners to interface to), as well as efficient run-time behavior
(because the model can be built with efficiency for specific
primitives in mind). There is another advantage to this
approach: An additional formal level at which robot behavior
can be specified and analyzed is introduced. Since a robot
system is real-time, and since ‘‘intelligent’” behavior is a
major goal of robotics, it is essential to have a program/plan
representation which is amenable to mathematical analysis.

We begin by presenting the key computational characteris-
tics of the robot programming domain. Our goal is to construct
a model of computation that explicitly captures these charac-
teristics concisely and efficiently. The next section incremen-
tally constructs the model, referring back to these characteris-
tics. The remainder of the paper is then devoted to working out
the formal definition of the model in detail.

II. CHARACTERISTICS OF THE RoBoT DOMAIN

Robot programming is a unique subclass of general-purpose
programming because the robot needs to interact directly with
a noisy, dynamic, and unpredictable environment [32]. Where
general-purpose programs accept input and produce output,
the distinguishing feature of robot programs is that the input
and output are directly linked to the perception of, and
interaction with, the physical environment [3], [32]. This is
our most basic characteristic:

Robot programs interact with the world. (C.1)

This has two immediate consequences. First, a model of
computation for robotics must contain some facility for a
plant/world model! Secondly, we argue that because of (C.1)

The central paradigm in robot programming
is that sensory input is linked with
knowledge to produce appropriate action. (C.2)
A convenient term for this type of computation is sensori-

motor computation. It is surprising to find that the guarded

move is frequently the only structure which relates sensing and
action in typical robot languages [16]. A notable exception is

RSS [8], a language explicitly developed for sensory-based

control. In RSS, to command the robot to do some action, the

programmer initiates a computing agent called a Servo

Process. Each such servo process is a combination of a

sensory query and a motor action in an infinite loop. This is

more expressive than a guarded move because it describes an
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actively maintained setpoint and a strategy for achieving that
setpoint—the sensory query is not just a termination condition.
RSS was designed to provide a versatile interface to the robot’s
control system, so its constructs are low-level. We argue that
this type of connection of sensing events to motor actions is
relevant af all levels of abstraction in robot programming.

Albus [1] has suggested a hierarchical model with this
sensorimotor structure. However, for different robot tasks, or
in response to a changing environment, it is convenient to be
able to dynamically reconfigure the way sensors and effectors
are linked, resulting in a more concise and efficient robot
program. Our second characteristic is

Robot programs exhibit a flexible, hierarchical,
sensorimotor structure. (C.3)
Albus’ system, with its separate sensing, modeling, and

control hierarchies and fixed set of levels, is too rigid. But

recursively defining an RSS-like network of sensing and
motor actions generates a much more versatile tool for
building high-level robot programs. At any level of abstrac-

tion, the program is described as a network consisting of a

sensory model for the task and the primitive motor actions of

the task. In turn, these elements' themselves can be decom-
posed into sensory and motor networks.

If (C.2) and (C.3) are combined, then higher level robot
programs have the interesting property that object models (the
sensory subnetwork) only explicitly contain those aspects of
the environment that are directly relevant to the task(s) at
hand. We call this an action-oriented view of sensing.
Conversely, the sensory network can be thought of as an
embedded “‘logical sensor’’ for the program. This has some
similarity to the concept of logical sensors [13], but with one
difference: the “‘sensor’’ is integrated directly with the set of
actions which use it. This approach to sensorimotor computa-
tion provides the basis for a general and efficient way to
interact robustly with an unstructured environment.

The schema [3], [22] or skeletal procedure mechanism
re-occurs often in robot programming. Taylor [30] discusses
an approach to robot programming with sensors based on
procedure skeletons which represent prototypical motion
strategies. Parameterizing a skeleton produces a specific
instance of that motion strategy. Recently, this approach has
been extended by Lozano-Perez and Brooks [20], with the
notion of geometric constraint propagation, to a general
system for task-level planning. Objects are well represented by
a prototype or template mechanism. This is particularly
appropriate in an action-oriented view of sensing; an object
can be represented as an instance of a “‘template’’ whose
parameters are simply that object-model data, or sensory input
about the object, which is relevant for the task in progress. We
list this as our third characteristic:

Robot programs are defined recursively using a

schema or class structure. (C.4)

' The sensory model can, therefore, contain nested motor commands, e.g.,
to control the panning or zooming of a camera.
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It is widely agreed that multiprocessing can help in making
robot programs more efficient: the real issue is how to make
best use of a multiprocessor. We argue that a robot program-
ming model should have structures which explicitly represent
the inherent parallelism of the domain, perhaps in addition to,
but distinct from, the accidental parallelism resulting from the
way any specific program just happens to be written. Robot
hardware is implicitly distributed—a set of actuators, each
controlling a degree of freedom (DOF) on the robot, and a set
of sensors constantly sampling the environment. We want to
be able to represent the ways in which these can be collected
into groups with common control needs? and controlled in
parallel. In addition, it is important to be able to represent
logical groupings that can be controlled in parallel, e.g.,
Virtual Fingers [4] and Oppositions [15]. That is, specific
actuators on the robot are identified, which can be grouped
together for the purpose of simplifying the description of the
ongoing task. Such a logical grouping may change from task to
task.

Robot programs are inherently distributed. (C.5)

Of course, the nested network task representation can also
express another major source of inherent parallelism—the
parallelism which exists between the gathering of the sensa-
tions necessary to construct a task model of the object, and the
actions to be carried out on the object, once they are
parameterized by the task model of the object. This allows us
to represent the “‘overlap’’ between sensing and action. For
example, in a program which directs the robot to reach to an
object, the action can be started once a coarse estimate of the
object position has been computed, and the destination refined
as more sensory information becomes available 3]

In order to emphasize the’continuity of this work with the
style of computation described informally in [3], [27] we call
our model Robot Schemas (or RS).

III. THe RS MobEL

®S is a model of distributed computation embodying our
nested network approach to robot programming. This section
introduces the ®S model and shows how it can be used to
represent robot programs in an efficient and concise manner.

A. Overview

Computation is performed in a distributed model by the
interaction of a number of concurrent computing agents. We
will use this concurrency to bring out what we have called
inherent parallism (characteristic (C.5)). A schema is a
generic specification of a computing agent in ®S (characteristic
(C.4)). We shall always write a schema name in bold-face
font. A computing agent is created from a schema by the
instantiation operation, and the term schema instance, or SI,
denotes a computing agent. Instantiation creates an SI, sets
some initial parameter values, and connects the SI to other
SI's. Using the schema Joint as an example, by Joint;_, we

* E.g., the grouping of the wrist versus the arm actuators on a robot in
which the position and orientation DOF’s can be separated kinematically, or
the fingers of a dexterous hand, etc.
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denote an SI in which some variable / has been initialized to
value a. When an SI has only one parameter which can be
initialized, and the meaning is clear, we shall abbreviate this to
Joint,. '

In order to build the sensorimotor structure demanded by
(C.2), we need to have SI’s communicate with each other.
Each SI has a set of communication objects called ports. At
instantiation, connections can be specified between these ports
and ports on other SI's. We write an SI of the schema T as
T,(iy, &, ** )0y, 02, -**), where v describes how the
variables of the SI have been initialized, the i’s are input-port
names, and the o’s are output port names. A data type is
associated with each port. Only ports of the same type can be
connected together. Communication occurs when an SI writes
a value to one of its output ports, which has been connected at
instantiation time to an input port on some SI, and the value is
subsequently read by that SI from its input port.

The practical issue of communication in a robot workcell
has received attention recently [10], [28]. Since our emphasis
is on the construction of a mathematical model, we choose a
communication approach which can be easily represented
formally, but which yields all the kinds of communication
necessary. This communication mechanism is a form of
synchronous message passing [2]. The combination of
synchronous communication and instantiation allows us to
support synchronous with timeout, and asynchronous, com-
munication (we show how later in the text).

Associated with each schema is a behavioral description
that defines how an instance of that schema will behave in
response to communication. In many cases this description
will actually be a network of other SI's. To ground this
recursion, we provide a simple procedural behavior specifica-
tion language in the Appendix. Schemas defined using this
syntax are called basic schemas.

We use the notation (A;, * - )€ to indicate that the SI's A;,

- are connected together as described by the port-to-port
connection map C. With (C.2) as our motivation, we define an
MRS program to be a network of SI's, some of which collect
and process sensory data, some of which control robot motion.
Such a network may grow and shrink as computation
proceeds (a dynamic network).

Example; Position Control Network: Consider a simple,
robot-level example: servoing a robot joint to a particular
position. Let us assume that this can be characterized by the
equation u; = PC(x; — X;) where u; is the motor control
signal to joint i, x; the current position of joint i, X; the desired
position, and PC some position control procedure. In RS, this
task is represented by a network of three SI's: one for each of
the components in (C.2). Let Jpos be a schema for reading
joint positions, which has an internal variable joint to
determine which joint it inspects. Jpos;yn,-;, or for simplicity,
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Fig. 1. A position servo network.

Let there also be a schema Jmot, which has a single internal
variable joint, and which (continually) accepts through its
only (input) port u a motor signal for joint number i and sends
the signal to the motor; we denote this Jmot;(x)( ). Comput-
ing agents such as these, whose behavior is defined only in
terms of the effect they have on the robot mechanism, or the
effect the state of the external world has on them, are called
primitive motor or sensory SI’s, respectively. These agents
are the only sensory input and motor output ‘‘channels’’
allowed; they could be pieces of hardware, for example. In the
formal analysis of programs/plans, the sensory and motor
schemas define the plant/world model with which the plan
interacts (characteristic (C.1)).

The connection between sensing and action can be imple-
mented by a third SI Jset; ;(x)(«), which (continually) takes
the value on its input port x and writes PC(x — X) to its
output port u, where X is an initialized variable of Jset giving
the desired goal position. We write this network as (Fig. 1)

( Ipos;( )(x), Iset; (x)(u), Imot;(u)( ) )€
C : (Jpos, x) —~ (JIset, x), (Jset, u) — (Jmot, u).

This simple network of three connected computing agents
describes the essence of task representation in ®RS; how
characteristics (C.2) and (C.5) are incorporated. Implicit
parallelism in the task is released by ‘‘overlapping’’ the
control and sensing components as concurrent processes. The
specific relationship between sensing and action (in this case, a
rather simple one) is implemented as communication con-
straints between the computing agents representing sensing
and those representing action.

B. Nested Networks: The Assemblage Construct

Constructing complex robot programs would be very
difficult if it was necessary to work with primitive schemas all
the time. One of the most important constructs in ®S is,
therefore, the assemblage mechanism, and this is where
characteristic (C.3) comes in. An assemblage is a network of
SI’s that externally appears to be a single SI. An assemblage
schema is a generic specification of a network of SI's. The
position control network could be rewritten as some assem-
blage Jmove as follows:

Jmove; .( )(x)=[ Jpos;( )(x), Iset; z(x)(u), Imot;(u)( ) 15E.

Jpos;, is an instance of Jpos parameterized to read the ith
joint. Let Jpos have a single (output) port x in which it
(continuaily) writes the current position; we denote this
Jpos; ( )(x).

The use of square brackets denotes that the network is an
assemblage. Two important pieces of information need to be
specified to make a network into an assemblage: how does the
initialization of local variables of the assemblage schema affect
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the initialization in each of the component schemas, and how
are the ports of the assemblage schema related to the ports of
the component schemas. The effects of variable initialization
are denoted by relating the subscript of the assemblage schema
name (LHS of the assemblage specification) to the subscripts
on the component schemas (RHS of the specification). For
example, Jmove is constructed to have variables initialized to
i and %, which causes the joint variables of Jpos, Jset, and
Jmot to be initialized to /, and the goal position variable of
Jset to be initialized to % The port equivalence map E
specifies the relationship between the ports of the assemblage
schema and ports of the component schemas. In our example,
E for Jmove is: E : (Jpos, x) ~ (x). Jmove can now be
treated the same as any schema. When an instance of Jmove is
created and initialized, it internally sets up the position control
network. By our specification of Jmove, its output port x
simply echoes the current position information available on
Jpos.

C. High-Level Robot Programming

By high-level robot programming we mean the specification
of robot programs at a high level of abstraction (i.e., lack of
detail); humans find it easier to specify correct programs in
this manner (perhaps because it is the level at which they deal
with each other [5]). The basis of high-level robot program-
ming is that actions are referenced against objects, rather than
against manipulator parts [19]. The assemblage construct
gives us a tool to generate complex, task-specific object
models, consisting of teams of SI’s which cooperate to
generate a current analysis of the object state.

For example, a single entity Bolt can be constructed which
communicates standard information about a bolt, e.g., posi-
tion, orientation, length, and thread size. Internal to Bolt, this
information could be garnered from multiple sources, e.g.,
position and orientation might come directly from visual data,
length might come from a geometric (CAD) object model, and
the thread size might come from tactile data (Fig. 2). In
addition, the sources could interact via network connections to
decide on a “‘consensus’’ view of the object.

D. Robot Programs as Task Plans

A task plan is a set of instructions necessary to achieve
some goal. A task plan corresponds to a particular kind of
robot program. For example, the Jmove program is a task
plan, whereas the Bolt program is not. A task plan at a high
level of abstraction corresponds to what is normally consid-
ered a fask-level robot program [18], [19], [30].

The most general way to describe a task plan is as the
relationship between a task-specific object model and a set of
actions [3]. The task is carried out on a particular object by
applying the task-specific object model to the target object.
For example, the task-specific object model for the task of
opening a door might just supply the radius of the door, and
the position of the handle relative to the hinge line (determined
by what information the actions in the task plan need). This
plan can now be applied to any object for which the task-
specific object model can pull out the necessary information.

A task plan is represented in RS is a structured assem-
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Bolt Assemblage

=)
s

An example object model as a network of SI’s.

Fig. 2.

blage—an assemblage with the following components: a set of
sensory SI's, which compose the task-specific object model; a
set of motor SI's, which represent the actions available in the
task; and a set of task SI's, which implement the connection
between sensing and action. In RS notation, where T is the
task plan assemblage, called the task-unit, S the sensory
schemas, M the motor schemas, and t the task schemas

T=[S, t, M]C.

Clearly, the components of this task plan assemblage can,
themselves, be assemblages—generating a sensorimotor task
hierarchy. This structure integrates the logical sensor concept
(here equivalent to the sensory model) [13] into the task it is
logically part of. Notice the two main improvements to the
Albus [1] sensory motor hierarchy: Since the sensory-motor
division is internal to each task description, the number of
hierarchical levels in one task does not constrain the number in
any other task. Secondly, each level of the hierarchy is a
network: SI's at each level can communicate directly with
their siblings. This property will become relevant in the next
section when we discuss action sequences. Section V of this
paper presents an example of a task-unit programming for a
standard robotic problem, the so-called centered grasp.

E. Parallel, Sequential, and Alternative Actions

Our task plan description [8, t, M]€ is weak because it is
very general. A stronger description can be made by explicitly
including sequencing and decision information which is
“‘hidden’” within the behavior of the task schema t. The key
concept used to represent sequencing information is the
precondition operation, written **:**, which takes a precon-
dition schema (a schema that tests some condition) and, based
on the result, decides whether and how to instantiate (infor-
mally, ‘‘trigger’’) a specified consequent schema. The
precondition schema can also choose values of the parameters
with which the consequent schema is instantiated. This is
written

Pre, :€T,

where 4 is the test to be carried out, and if it succeeds T, is
instantiated and connected according to C. This most general



284

statement of the precondition will not be used very often. If,
by dint of name and explanation, /4 and C are clear, we shall
omit them. A wide variety of action sequencing can be
represented using the precondition schema. The key idea is
that the precondition schema is a parallel, decision-making
mechanism, which can be used in a number of useful robot
task plans.

Sequential Preconditions: If two actions are to be activated
sequentially (i.e., the second instantiated when the first
deinstantiates) then in a sense, the second can be considered as
the consequent of a special precondition schema which detects
the deinstantiation of the first. This special sequential precon-
dition will be denoted by ‘‘;’’. Two task-units are established
as sequential by writing

T1;°T2

where C describes the connections for the consequent schema.

World Preconditions: An important form of temporal
ordering in a task is the synchronization of actions with the
environment, i.e., grasping a part when it appears from the
feeder, starting a fine motion when the end-effector is in some
defined spatial envelope. The so-called opportunistic schedul-
ing of [7] is one example of this synchronization. We call
precondition schemas which detect this class of condition
world preconditions.

The world and sequential preconditions allow the descrip-
tion of quite complex temporal sequences, e.g., where T/ are
task-units and W' world preconditions

T1; T2 ;[T3, T4] ; [W5: T5 ; T6, W7 : T7].

The “‘activation’’ order above is left to right. Commas indicate
concurrent task-units (as they have all along), and square
brackets are used to group networks. Using these, task plans
- can be represented as a partially ordered sequence of actions.
The partial ordering is controlled by the preconditions, which
are parameterized as execution time to yield a set of sequential
and parallel actions.

Consider an example of a task plan for the assembly of a box
(see Fig. 3) composed of a base, four sides, and a lid. In this
example, the sides can be placed on the base in any order; the
only part ordering constraints are that the base be first and the
lid last. Let us call the precondition schema which recognizes
an instance of the base in the world, Base, and similarly for
Sidel, Side2, Side3, Sided, and Lid. Let us call the schema
which implements the placing action Place. We will assume it
can be parameterized by the recognition preconditions to
accept a particular object 0 and destination d, i.e., Place, 4.
The program implementing the assembly task plan is

Base : Place, 4;
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Position SIDE 1

Position SIDE 2

Position BASE Position LID
Position SIDE 3
Position SIDE 4

Fig. 3. The box assembly plan.

solely by the order in which these parts arrive (e.g., [7]) or are
recognized (e.g., if they were in a jumbled heap). Note that all
the side placement actions could be triggered simultaneously;
but, of course, if there are fewer than four robot arms, they
cannot all be executed concurrently. The notion of resource
precondition schemas will be introduced to deal with the
resource allocation problem.

Selection Preconditions: A selection precondition is a
class of precondition which selects between consequent
schemas on the basis of some test. A good example of this is
grasp selection for a dexterous robot hand. A dexterous hand
can usually grip an object in more than one configuration.
There are a number of attempts in the literature to determine a
best configuration based on knowledge of what is to be done
with the grasped object, as well as the characteristics of the
object itself? [6], [15], [24].

Let there be n grasps available, each represented by a task-
unit schema Grasp', for i € {1, ---, n}. Each grasp has an
associated test which determines when it is best to apply this
grasp; let us call this Gtest’, for i € {1, ---, n}. We can
write the relationship between grasp and test as

Gtest' : Grasp', 1€ {1~ n}

It is important to see that this does not necessarily mean that
the tests are independent of each other; the preconditions could
be connected in a distributed decision network. In that case, it
might make more sense to write a single common precondi-
tion: Gtest : Grasp'.

Resource Preconditions: The resources available to a
robot program consist of manipulators, sensors, objects, etc.
Resource allocation is a crucial notion in a distributed
programming model. In the box assembly example, we had the
situation where up to four actions might simultaneously
compete for the robot arm. Our solution is to introduce a class
of preconditions to deal with shared resources. The resource
precondition schema has as its test, a query to determine if the
shared resource can be safely allocated. Once the consequent
schema has terminated, the resource is freed.

For example, the Place task-unit schema might internally

[ Sidel : Place, , , Side2 : Place, 4,
Side3 : Place, , , Side4 : Place, , ];

The sequence in which the base and lid are placed is rigidly
determined using the sequential preconditions. However, the
order in which the placing actions are triggered is determined

Lid : Place, ;.

* Lyons [21, ch. 2] describes a simplified example of this selection
mechanism in detail.
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have as part of its program
Robotx : Reach,

where Robotx is a resource precondition which triggers
Reach when a robot of some target class x can be safely
allocated. The parameter r tells Reach which robot has been
allocated; it might, for example, be the name of a schema
which when instantiated will provide a link to control the
robot.

IV. T ForMAL DEFINITION OF RS

In this section, a concise meaning is constructed for the
components of the RS model. This is an important, if detailed,
step for two reasons:

1) We can eliminate any inherent contradictions in our
model.
2) We can use these definitions as the basis for future work
in
a) Establishing that task plans behave in a specific
way.
b) Reasoning about equivalent plans.
¢) Automatically generating task plans.

Defining a formal semantics consists of specifying mathe-
matical objects which define entities in RS concisely. This
construction renders our model well-defined in the sense that
details omitted from the informal semantics can be inferred
from the mathematical semantics. Thorough analysis and
exploration of the model cannot proceed satisfactorily until
such a formal basis exists. But a formal basis is also necessary
for the verification and concise specification of task plans, or
for establishing guarantees about their behavior. It also much
simplifies the construction of correct processor-level or chip-
level implementations of the model itself.

There are many mathematical models of concurrency, e.g.,
[14], [25], [29] to name but a few. An operational semantics is
constructed for RS based on the Port Automaton Model
(PA) of Steenstrup et al. [29]. We chose the PA model
because it offers an intuitive and elegant way to characterize
the concept of an SI, and the way in which SI's may interact
with each other. In addition, it provides a composition
definition which facilitates the definition of the assemblage.
We begin by considering the semantics of the basic schema.

A. Basic Schemas

A basic schema description consists of the following: a list
of input and output ports, an internal local variable list, a
behavior section. The behavior section is a program which
loops continuously, once the schema has been instantiated as
an SI, until that SI deinstantiates. The program instructions
can synchronously read from, or write to, the ports, access
internal variables, instantiate other schemas, or deinstantiate.
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We formalize these statements with the programming-style
syntax definitions below.

Definition I
A basic schema description is

basic-schema :: = [ Schema-Name: (N)
Input-Port-List:  ((Iplist))
Output-Port-List: ((Oplist))
Variable-List: ((Varlist))
Behavior: ((Behavior)) ]

where

* N is an identifying name for the schema.

* Iplist, Oplist are lists of (Portname) : (Porttype) pairs
for input and output ports, respectively.

® Varlist is a list of (Varname) : (Vartype) pairs for all
internal variables.

® Behavior is a specification of computing behavior.

Any component other than the name may be absent, and when
relevant the omission is indicated by ().

Nothing we have said constrains the way the computing
behavior of the basic schema is implemented. It could be a
neural network, for example, or a VLSI chip. We have chosen
a simple procedural language to specify the computing
behavior of the basic schema (details in the Appendix).

B. Instantiation-Free Semantics

We can now define the instantiation-free semantics of a
basic schema; i.e., the semantics of a basic schema which does
not contain an instantiation or deinstantiation statement. This
simple class of schemas is a good starting point. The Port
Automaton model of [29] is the basis of our semantics.
However, we modify the PA model to represent unidirectional
ports, synchronous communication, and a network automaton
definition.

Definition 2

A port automaton is a collection of objects and maps

P=(LX‘ Lyl Q’ X; Y, Tl a) (1)
where
L. the set of input ports,
L, the set of output ports, and we use L to
denote L, U L,
o the set of states,
T C 22 the set of initial states,
X = (X;:i € L,), where X is the input set for port i,
Y = (Y;:i € L,), where Y, is the output set for port i,

8:0 x X — 20%7 the transition Junction, where X =
et (X; U {#})and ¥ = e, (Y; U {#)}).

A value of # in a tuple of X and ¥ indicates there is no input or
output value at the designated port.
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We introduce the notation ¥ < xon X ifx = (x;, ** -, x,,),
X = (%, -*-, X,), and for each i either X; = x; or ¥; = #. The
Sull-state transition map is

@ XxQx P-2%x0x?,

This map formalizes the way an automaton can process an
input port or send values to an output port.

Definition 3

(x',q’,»') € e(x, g, y) just in case there exists ¥ < x
such that there exists (¢°, ) € 8(g, ¥) with the following
conditions:

Yt Xis iff,a=#
i &, if Xi=x;+H#
v Yy iEP=H#

Y Sl if y;=#

where for all i, y; # # implies that y; = #. That is, to be a
candidate successor state to any full-state, there must be a state
transition on a “‘reduced’” input tuple which reads a subset of
the non-# entries, and given that all the necessary output ports
are free, the destination state has these ports written to. This
formalism will represent read-only (¥ is all #), write-only (%
is all #), and internal (% and ¥ are all #) transitions. This is the
formal meaning for an SI reading an input port and writing an
output port. The internal transitions are useful for describing
state changes not caused by communication (e.g., iteration).

Note that external agents (other PA’s connected to this one)
can also change the full state, either by changing a # to a non-#
value in X (writing to an input port), or by changing a non-#
value to a # in ¥ (reading from an output port). To complete
our communication definitions we need to formalize how these
external communications occur.

A behavior of this PA is any sequence of input reads and
output writes consistent with possible changes of full state:

Say (x’, ¢", ¥') € R(x, g, ¥Y)("“R” for read) if ¢* = g,
¥’ = y, and there is a j with X/ ##,x;,=4#, andx/ = x;for
i # j. We call (x/, j) the read of the transition.

Say (', q’, ¥") € W(x, ¢ y)(“ W™ for write) if ¢” = g,
X’ = x, and there is a j with yj’ =#,y; # #, andy = y for
i # j. We call (y;, j) the write of the transition.

Definition 4

A sequence ((x;, g,, ¥,)) of full states is admissible if for
each 1, (x;, q;, y,) belongs to one of o(x,_y, ¢/ 1, ¥i-1),
R(X—1s Q—1s Yi-1), O W(X;_1, Gi—14 Ye—1)-

A behavior of the PA is then any sequence, in order, of
reads and writes of an admissible sequence of full states.

In order to satisfy ourselves that no power has been lost
from [29] by the introduction of separate input and output
ports, it is necessary to show that for any port automaton with
bidirectional ports, it is possible to construct a port automaton
with unidirectional ports which, in some defined sense, ‘‘does
the same computation,’”” and vice versa. This is presented
elsewhere [21]. The next step is to construct the mapping from
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the basic schema syntax on to the port automaton model
developed here. We start by defining what a state of a basic SI
18.

The State of a Basic SI: Assuming the serial program
approach to defining a basic schema given in the Appendix
(the assemblage definition will then introduce concurrency),
the internal state of a basic SI can be constructed using the
standard approach based on statement labels and the values of
internal variables. The internal variables of schema N can be
listed by name (¥, V5, -+, V), where N is called a k-
variable schema. In an arbitrary instance of N, each variable
V; will have a value v;. At any stage, the contents of all the
variables of N; can be written as a tuple* (v;, v, **+, 1) €
;L

We assign a unique label, or index, to all the statements in
the program description part of N from the set of natural
numbers I, by scanning the statements of N in sequential
fashion, starting at the first statement after the opening
parenthesis of the behavior specification, and finishing with
the last statement before the closing parenthesis. A state of
computation for an instance of a k-variable schema is a k +
1-dimensional tuple over 91 x R. We shall also call it a state
vector. The definition of assignment in the basic schema
allows statements of the form V := EXPR(i,, -, i, v,
“**, Un) where Vis a variable or output port name, the i’s are
input port names, the v's are variable names, and EXPR()
denotes an arithmetic expression. If there are / input ports in
the EXPR(), then we have to model the evaluation of
EXPR() as a multiple state transition comprising any
necessary reads to the input ports, followed by EXPR()
evaluation. There is nondeterminism in the ordering of the
reads, since it is impossible to foretell what order the inputs
will arrive in.

The Semantic Mapping: Taking into consideration those
issues discussed above, we can now specify the semantic
mapping which takes a basic schema onto that port automaton
which is its instantiation-free semantics.

Definition 5

The semantic mapping from the components of a schema N
to those of a port automaton P = (L,, Ly, Q, X, Y, 1 68)is
defined as follows:

® The sets of input ports L,, and output ports Ly, of Pcan
be constructed as follows: For each name in the input port list
of N add an input port with this name to L,. Repeat the process
with the output port list of N and L,.

* X; = @ for all input ports. ¥; = ® for all output ports.

® The set of states Qof Pis Q = 9 x ®R*; where the state
vector of N provides the element of ®*, and the statement
label in N encodes the current statement in the behavior
section.

® The set of initial states of P, 7, is defined: 7 C 2{1}x&*
denotes any assignment of initial variable values in which the
next instruction to be executed is the first instruction.

* Since all data types can be mapped onto computer memory, for technical
convenience and without loss of generality, 3, the set of port data-types, can
be restricted to ®, the set of computable reals [17].
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® The transition map & is constructed from the behavior
section of N in a straightforward way which need not be
detailed here.’

This concludes our definition of the instantiation-free
semantics of basic schemas. Most other schemas will, how-
ever, need to use instantiation. The instantiation-free seman-
tics gives us an appropriate starting point to consider these
more complex schemas.

C. The Full Semantics

An augmented port automaton is a port automaton which
can execute a state transition which is an instantiation
operation, i.e., connecting in a copy of another specified port
automaton to specified ports, and a state transition which is a
deinstantiation, i.e., the removal of the connections of a port
automaton to specified ports.

The Network Automaton: Steenstrup et al. demonstrate
that a port connection automaton (PCA), two port automata
with some of their ports-connected together, is also a port
automaton. If P! and P? are the component automata, and they
are connected by map ¢, then the PCA is written P'||.P2.
Their proof consists of constructing the PCA in terms of its
two component automata. All ports of the component automata
which do not have connections appear on the resultant PCA.
Internally, the set of states of the PCA is the Cartesian product
of the states of its component automata. The network map of
the PCA is constructed by considering how a message across a
port-to-port connection causes transitions in each of the
participating automata.

The state transitions in the component schema happen
concurrently and asynchronously once a communication has
occurred. For example, one component automaton may be
waiting for communication on some port, while another
automaton is executing state transitions. Another key point
about the PCA is that its behavior can be nondeterministic
due to nondeterminism in the ordering of its internal communi-
cations (if more than one internal connection is “‘activated,”’
then it is impossible to predetermine which communication
will occur next, and hence, which states each of the component
automata will go to next).

Definition 6

We extend the definition of the port connection automaton
to define the network automaton as follows. The network
automaton of a set of m-port automata M = {P/: j =1, -,
m} and a set of port connection maps C = fost k=1, -,
m — 1} is a single port connection automaton constructed
in the following manner: Select P! and P2, let B' be the
port connection automaton P'||.,P?. Continue constructing
port connection automata in the ordered sequence P/ =
Pf‘I",jP“‘ until j = m — 1. This final port connection
automaton P™~1 is the network automaton, and is denoted

C

s Pl

Plem

* See [17] for the general methodology, and [21] for a more detailed, if
slightly different, version of the present problem. There are many examples of
state-transition definitions of programming statements in the literature.
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Full Semantics: We can now give the full semantics. A
state now comprises a specified connection of port automata,
together with a full state for each automaton of the network.
Note that the state must be pairwise port-compatible, i.e., if
output port y; of one automaton is connected to input port x; of
another, then the values (possibly #) on the two ports must be
equal.

An instantiation operation then adds a new copy of the port
automaton of the designated schema, makes the designated
connections, and uses the initialization of variables and the
prior values on- the port to which the new automaton is
connected, to establish its initial full state. The full states of all
other automata in the network remain unchanged.

For deinstantiation, we need to make explicit that the port
automaton semantics P is currently a network automaton

3 P.

Deinstantiation results in a state transition which yields a new
network automaton identical to the original except that one
component automaton has been removed. If PV is the port
automaton that is deinstantiated, then the next state is

(*.2,7)
M~ (PN}
where § comprises the full-state vector of all the automata in
M {PVN},

The semantics of instantiation and deinstantiation are
constructed by considering the behavior of the network
automaton composed of all port automata connected together.
However, the schemas themselves, of which the port automata
are the semantics, are specified as single concurrent comput-
ing agents. It is also very useful to consider aggregating a
network of schemas into a single computing agent description;
this is what we call the assernblage.

@

D. The Assemblage Schema

An Assemblage SI is a computing agent whose behavior is
defined as the interaction of a number of communicating SI’s.
This aggregate SI can be considered the instance of a single
assemblage schema, which must contain information on how
the individual SI’s are created and connected, and how the
ports of the component SI's appear as the ports of the
assemblage SI. An assemblage schema describes a generic
network of schemas, where a schema is now defined to be
either a basic schema or an assemblage schema; hence,
assemblages can be nested. 5

An assemblage schema description consists of a schema
name and input and output port lists and a set of internal
variables, the same as for a basic schema. These describe how
the assemblage SI appears to other SI's. ‘Unlike a basic
schema, the assemblage schema does not have a behavior
section with a sequence of programming statements. Instead, it
has a Network section, which contains the SI network
description. The syntax of the assemblage petwork description
should be, and is, completely different from the syntax of the
behavior section of a basic schema—their purposes are
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different, the assemblage facilitates the description of (possi-
ble dynamic) networks of computing agents.

The assemblage schema is more than a basic schema with
different syntax because it hides the details of its internal
network of SI's. From the view of another SI, an assemblage
and a basic SI are identical. The assemblage is also a natural
scoping mechanism: Statements about a schema or SI within
an assemblage affect only the SI's which are local to that
assemblage, i.e., the SI's composing the assemblage’s net-
work. An assemblage deinstantiates if and only if all the SI's
of its internal network deinstantiate.

Definition 7

We use the following syntax for assemblage definition:

[ Assemblage-Name: (N) :
((Iplist))

Input-Port-List:
OQutput-Port-List:  ({Oplist))
Variable-List: ((Varlist))
Network: ({Network)) ]

where

e (N), (Iplist), and (Oplist) are the assemblage name and
the lists of its input and output ports, respectively (these
determine how the assemblage appears to other SI’s);
(Varlist) is an internal variable list;

® (Network) initializes the network of SI’s; it creates and
connects the SI's which form this assemblage.

The (Network) specification is essentially a more program-
ming-oriented version of the notation we used in Section III.
Rather than use the C and E maps, for brevity, a version of the
(Instn) command of the basic schema is used. In addition,
some iterative statements are defined to simplify the creation
of large networks—these are the (For) and (Forall) state-
ments.

Definition 8
Network :: = A|(Nstat), (Network) | (Nstat)
Nstat = (For) | (Forall) | (Instlist)
Imstlist :: = A|(Instn)(Instlist).

The (Instn) is the instantiation command of Definition 16 in
the Appendix. Within (Network), an equivalence (the E map)
between an assemblage port and a port on a component SI is
established by placing the assemblage port nanie in the port
connection lists at the appropriate place and preceded by the
= symbol in the instantiation command. The (For) statemerit
specifies a definite iteration, to simplify multiple schema
instantiation. The (Forall) statement is a definite iteration
across schema instances (once for each SI of the index
schema). For notational convenience we borrow (For) from
Definition 15 in the Appendix.

The Forall Operation: The Forall operation is a special
schema operation which uses a schema name as an index for
iteration. The commands in the loop-body (Imstlist) will be
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During Classification After Classification

Fig. 4. Object classification using Forall.

executed once for each instance of S which exists for as long
as the assemblage exists. This special operation facilitates the
construction of the various types of precondition schemas
discussed previously (e.g., see [22]). Within the body of
Forall, any reference to S is taken to refer to the instance of
the current iteration,

Definition 9
Forall :: = Forall S : (Instlist) Endforall.

As an example, consider the problem of classifying objects
seen by the robot. Let us assume a visual subsystem adept
enough to segment the world into a set of candidate objects
each tagged with a set of visual features. Each candidate object
will be represented by an instance of the EOB schema
(Environmental OBject), the primitive visual schema, which
has a set of output ports on which can be read the values of the
features. The classification problem now becomes one of
testing the ports of each EOB instance to determine if it
represents an object of the designated class.

The Forall operation provides a nice way to do this
classification. We build a schema Xtest which when instan-
tiated and connected to the ports of an EOB SI will determine
if the values on those ports qualify the object to be member of
the class X of objects. Its action on success is to create a
corresponding instance of a schema Xobject connected to
each EOB which passes the test. The Forall operation (see
Fig. 4) is used to create (and connect) one instance of Xtest
Jfor each instance of EOB as follows (assuming EOB ports f,

S, fo):

Forall EOB:

Xtest(EOB(f;), EOB(f;), EOB(/))( );
Endforall.

This sets up a network to classify each EOB concurrently.
A more sequential version of Forall can be constructed from
this version [21].

The Semantics of the Assemblage: The semantics of the
assemblage is easily constructed—the network automaton,
where the semantics of the component SI's of the assemblage
supply the set of port automata. The only difficulty concerns
the assemblage port names.

2P
M

has as its ports the unconnected ports of each of the automata
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in M. In an assemblage definition, the component SI names
can be changed, or hidden, from the outside world. Uncon-
nected component SI ports not declared equivalent with an
assemblage port (i.e., hidden) do not cause problems; they
simply cannot occur in more than one state transition.

The equivalence connections in (Network) can be used to
generate a renaming map E to determine how unconnected
(and unhidden) component SI port names are renamed as
assemblage port names. Finally, semantics of the assemblage
is given by the network automaton

b

M/E
with its ports renamed according to the map E. For a treatment
of why (For) and (Forall) are valid in (Network), see [21].

E. Port Connection Fan-in/out

Fan-out occurs when the output port of some SI is connected
to more than one input port on other SI's—if there are 7 such
connections, the fan-out is said to be of degree n. For
example, to instantiate schema A with its first output port
(called a, say) connected to two other (input) ports b and ¢, we
write A()(b|c). Any value written to @ by A will be passed
both to b and c. However, it is necessary to consider whether
the write at @ terminates when one of b or ¢ is read, or whether
both must be read before the write will terminate. The former
is called or-semantics (either read), and the latter, AND-
semantics (both read). In general, there are uses for both
kinds. We use *‘|" to denote or-semantics and **|*** to denote
AND-semantics.

Fan-in occurs when an input port on some SI has more than
one output port connected to it; again, if there are n such
connections, we say the fan-in has degree n. For example, to
instantiate A with its first input port (called 4, say) connected
to two other (output) ports b and &, we write A(5|¢)( ). Any
value written by either b or ¢ will be received at 4. Again, *‘|”’
denotes or-semantics and **|*** denotes AND-semantics.

If fan-in/out occurs on a port due to multiple separate
connection lists, we apply default semantics to the connec-
tions. For simplicity, we shall assume that the default
semantics is equivalent to or-semantics.

Formal Semantics of Fan-in/out: Port automaton connec-
tions are always of the form one output port to one input port.
The challenge of defining fan-in/out semantics is in devising a
way to represent multiple connections to a port. We introduce
a class of port automata called connectors. Any instance of
fan-in/out on an SI port will be modeled by having a connector
automaton which takes the multiple connections, one at a time,
on a set of ports, and maps them to a single port, and by
connecting this port to the designated port on the port
automaton which is the semantics of the SI.

We will refer to a fan-out connector, which takes an output
port to a set of output ports, as a split connector, and a fan-in
connector, which takes a set of input ports to single input port,
as a join connector (Fig. 5).

Definition 10

A split connector is a port automaton P¥ii with a set of
output ports L, = {1, -+, n}, an input port L, = {1}, where
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Fig. 5. Split and join connectors.
Yi=Y,= - =Y, =X,asingle state Q = {g}, and a

full-state transition function defined by:(x',q,¥’') € ¢(x, q,
») iff either

AND-semantics split:

X; # #,and x; = xy, and for all i, Y = x.

OR-semantics split:

X, # #,and x| = x;, and there is an i, »;" = x, where for all
k#i,y =#

Definition 11

A join connector is a port automaton P", with a single
output port L, = {1}, a set of input ports L, = {1, ---, n},
where X} = X; = +++ = X, = Y, asingle state Q = {q},
and a full-state transition function defined by: (x’, q, ') €
e(x, g, y) iff either

AND-semantics join:

foralli, x; # #and forall i, x; = x;, and y, = x; for some j.
OR-semantics join:

there is an 7, x; #+ #, and forall k # i, X, =#,x! =x;,and
Y =x.

The following two observations result directly from the fan-
in/out semantics (for more detail see [21]):

Observation 12: A connection can be constructed between
an input port on one SI and an output port on another SI, which
has the property that a read to the input port will always
terminate, even if the output port is never written to (time-limit
schema).

Proof Outline: A schema can be constructed which
simply cycles through some number of internal states and then
transmits a message on its one port. An SI of this schemia can
be made and fan-in connected to the receiving port with or-
semantics. Since this SI is guaranteed to always write its port,
a guarantee can be made that eventually any read to the
receiving port will always terminate. This is a weak form of
time-out, since the ‘‘clock’ duration is unpredictable.

Observation 13: Using the synchronous communication
operations and the instantiation operation, it is possible to
duplicate completely an asynchronous communication opera-
tion (messenger schema).

Proof Outline: When an SI wishes to deliver a message
asynchronously to a given port, it creates a messenger SI using
the instantiation parameters to pass the text of the message to
it, and connects it with or-semantics fan-in to the port. The
messenger SI uses the standard synchronous send primitive.
OR-semantics fan-in guarantees that every message sent to this
port will eventually be received, but does not guarantee their
order.
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F. Semantics of Task-Units and Preconditions

The RS task-unit is simply a structured assemblage; an
assemblage that agrees with the task-unit “‘formula® in
Section III-D. As such it does not need any computational
semantics other than already provided for the assemblage.

The general form of a precondition from Section III-E is
Pre;, : € T,, meaning that Pre applies test A to its environment,
and if it is successful, it creates T, connected as described by
C. Any of the preconditions in Section III-E can be reduced to
this description. Applying our semantics of instantiation and
deinstantiation, where P? is the port automaton semantics of
the precondition schema, PT that of its consequent schema,

and
P
M
the semantics of all other SI's, then the network goes through

the stages:
2P
M

then

Y P

MU{PP}

and the test A is evaluated, and when and if & becomes true

I

MuirTy
Let H be defined as

if h has evaluated true

_) {8},
Hih, 4y By= { if 4 has not yet evaluated true

{4},
Determining if & was true boils down to determining when P#
has entered some ‘‘A is true'’ state. So the precondition
operation can be defined more concisely as a special kind of
automata composition
S P,

MUHh PP PT)

This puts the emphasis on the test & carried out by the
precondition, and shifts emphasis from PP which is the
implementation of the test. Varieties of this precondition
semantics can be used to express each of the preconditions
introduced already.

V. Task-Unit DEFINITION EXAMPLE

Now that we have introduced RS syntax and semantics, we
give a more detailed example of task-unit programming for a
standard robotics problem: the centered grasp.

The centered grasp problem consists of centering a gripper
over an object to be grasped based on contact feedback from
the fingers. The problem arises whenever gripper fingers need

[ tGrip
Input-Port-List:
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Wrist Position

Finger Pair 1

Finger Pair 2

Fig. 6. The centered grasp problem.

to be moved together in opposing pairs, and it is not limited to
two-fingered grippers; the following example was tested on
the four-fingered Philips Multi-Functional Gripper [9] (Fig.
6).

We divide the problem into two concurrent activities:
moving the fingers in to contact, and moving the wrist to
eliminated contact. Let us assume the following primitive
sensory and motor schema:

FTact;( )(/, r) is parameterized to report contact on finger-
pair i on its two output ports / and r as a bit value: 1 for
contact, 0 for no contact,

FClose;(sg)( ) is parameterized to control the separation
between fingers in finger-pair i. If a 0 is written to sg, the
fingers close at some fixed rate until a 1 is written to sg, at
which point they stop.

WristPos (p)() controls the position of the wrist. A
desired wrist offset from the current position is written to p,
and the wrist moves from its initial position to the initial
position plus the offset vector.

We shall describe the centered grasp problem in a modular
way that can be applied to grippers with multiple finger-pairs.
We will build a task-unit Grip; which will close finger-pair i as
long as there is no contact on either finger, and a task-unit
Compensate; which moves the wrist whenever there is contact
on one finger pair in such a way as to eliminated that contact.
A network (Grip;, Compensate;), i € {1, -, n} imple-
ments the task for a gripper comprising of » finger-pairs.

The Grip task unit can be specified:

Grip; = [FTact;()(/, r), tGrip(/, r)(fs), FClose;(s,)( )]~

with C as show in Fig. 7. The task schema tGrip can be
specified as a basic schema:

(1 r:Bit)

Output-Port-List: ( fs : Integer )

Behavior:

(I =

1) OR (r = 1) Then fs = 0; Else fs = 1;

Endif; ) |
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Compensate;

Fig. 7. The Grasp and Compensate task-units.

The Compensate task-unit can be specified as

Compensate; =
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basis we have established here to reason about sensory
interaction and resource usage in plans. A key point to be
addressed is the nature of the plant/world model, a topic
minimally addressed in this paper.

This paper describes the motivation, structure, and formal
semantics of ®S. Lyons in [21] presents a linear-time time
temporal logic specification and verification methodology for
@S, having the automata semantics as its interpretation (and
also presents a rudimentary plant/world model). A distributed
robot control environment has been implemented on a
VAX™ 11/780. The environment consisted of a compiler and
emulator for ®S, and a robot simulation package. Current
work involves implementing an updated version of this system
on an in-house multi-processor system to control a Puma 560
equipped with a multi-functional gripper [23], [11], [9].

[FTact;( )(/, r), tCompensate,(/, r)(wp), WristPos(p,)( )] £

with C is shown in Fig. 7. The task schema tCompensate can be specified as a basic schema which is parameterized by f;, the

unit direction vector of finger-pair i (see Fig. 6)

[ tCompensate

Input-Port-List: ( I, r: Bit )

Output-Port-List: ( wp : Vector )

Variables:
Behavior:

)

where § is some built-in small position increment. We can stop
tCompensate as soon as we get contact on both fingers.
However, it may be better to let Grip continue to run to
combat unforeseen disturbances until the object needs to be
released.

VI. ConcLusION

This paper is one of the few attempts in the literature to say
“‘what is special”” about robotics in computational terms. The
goal of this research was to come up with a model of
computation for robots—a way of describing and analyzing
computation from a robotics point of view—rather than a
particular syntax for robot programming. What we have
accomplished is simply the start.

®8 is a model of distributed computation, specifically
constructed to express and analyze sensory-based robot
programs. We presented a set of five characteristics of the
robot programming domain to fix an appropriate structure for
the model. Among the properties that make our work unique
are that it uses nested networks for representation and
efficiency, it is formally defined to facilitate plan verification
and autogeneration, and it can support the use of a plant model
to determine the behavior of a plan in response to the world.
Future work will proceed along the lines of using the formal

( tl, tr : Bit )
(l=hktr=1r
If (t1 = 1) AND (tr
If (t1 = 0) AND (tr

&6xf;; Endif;
— &xf;; Endif;

0) wp
1) wp

I
o

]

APPENDIX
BasiC SCHEMA SPECIFICATION SYNTAX

Our main goal in this paper is to construct a formal model of
computation directly based on the characteristics of the robot
domain. We are not so concerned at this stage with the details
of what programming syntax should be used—that has more to
do with humans than with robots. However, in order to reduce
our ideas to practice we do need to use some form of program
notation. From that perspective, we present the following
schema specification syntax.

Definition 14

Behavior :: = A|(Stat); (Behavior)

Stat 2 = (Assign) | (IfElse) | (For)
| (Instn) | (Dinstn)

Assign = (Var) := (Expression) |

(OutputPort) : = (Expression)

We embed reading and writing into the syntax of Assign; an
imput portname occurring in Expression is a read from that
port, and an output portname on the left-hand side of an
Assign is a write to that port. Apart from this, we assume
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standard syntax and semantics for an Expression, with the
addition of certain vector and matrix operations (which will be
specified when needed).

Definition 15

IfElse :: = If (Condition) Then (Behavior)
Else (Behavior) Endif
For = For (Index) = Ib --- ub

(Behavior) Endfor

We assume standard syntax for Condition, and constrain
Index to be an internal integer variable for simplicity. Apart
from this, the semantics of If and For are as one would expect.

The instantiation operation takes as input a schema name,
some variable initializations, and a connection map, and
produces a new schema instance, while deinstantiation
effectively removes an SI from the network.

Definition 16

Instn
Dinstn

(Schemaname) v, ((CI))({(CO))
Stop

where

® Cl is a list of input port names, denoting port connections
between the named ports and the corresponding (by
position in (Iplist)) port names of the created SI: the
types of connected ports must match.

® CO is a list of output port names, denoting connections
between the named ports, and the corresponding (by
position in (Oplist)) ports of the created SI; the types of
connected ports must match.

® Vs a list of initial variable values; these are assigned by
position to the internal variables of Schemaname as they
are specified in Varlist.

Example; The Factorial Schema: To illustrate the use of
this syntax, we recast the usual recursive definition in terms of
a single schema Factorial. Note the way in which ports are
named to ensure proper communication between adjacent
instances.

When instantiated and passed a value n on port x, an SI of
Factorial creates a network of SI's recursively to calculate n!
(see Fig. 8).

[ FACTORIAL
Input-Port-List:
Output-Port-List:
Variable-List:
Behavior:
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Factorial Factorial Factorial

X B ¥ L) ¥ % <5
n i
n!
fx o s (n-2)! 1 e ey
Fig. 8. Recursive network of Factorial.

Upon instantiation, a value is read from the port x and
stored in the variable zemp. If the value returned was less than
or equal to one, then (by definition) one is returned as its
factorial on port fx. Otherwise, this Factorial SI creates
another instance of Factorial connected as follows: The xm
port on the *‘old” SI is connected to the x port of the ‘‘new’’
SI (remember, connection is made by positional correlation in
the port list). Similarly, the fx port of the ‘“‘new’ SI is
connected to the pfx port of the “‘old’’ SI. The ports pfx and
xm function as the continuation path for the evaluation of the
factorial. The schema is programmed so that when this SI can
at last read from its input port pfy, it will be when the factorial
of temp —1 is passed back to the creator SI through the pfx
port, and this (by definition) multiplied by femp is the value of
temp! to be written to port fx.
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