Paper Number 2. Publication List B(5). Encyclopedia of Artificial Intelligence, ’
Edition, Wiley & Sons, December, 1991.

(O
1171 W‘#L

PLANNING, REACTIVE

C. Green, “Theorem-Proving by Resolution as a Basis for Ques-
tion-Answering Systems,” in B. Meltzer and D. Michie, eds.,
Machine Intelligence, Vol. 4, Halsted, Wiley, New York, 1969,
pp. 183-205.

K. J. Hammond, Case-Based Planning: Viewing Planning as a
Memory Task, Academic Press, Cambridge, Mass., 1989a.

K.J. Hammond, “Opportunistic Memory,” Proceedings of the 11th
IJCAI, Detroit, Mich., Morgan-Kaufmann, San Mateo, Calif.,
1989, pp. 504-510.

B. Hayes-Roth and co-workers, “Modelling Planning as an Incre-
mental, Opportunistic Process,” Proceedings of the Sixth
IJCAI, Tokyo, Japan, Morgan-Kaufmann, San Mateo, Calif.,
1979, pp. 3756-388.

G. G. Hendrix, “Modelling Simultaneous Actions and Continuous
Processes,” Artif. Intell. 4, 145-180 (1973).

G. Houghton and Stephen Isard, “Why to Speak, What to Say and
How to Say It: Modelling Language Production in Discourse,”
in P. Morris, ed., Modelling Cognition, John Wiley & Sons,
Inc., Chichester, 1987.

S. A. Hutchinson and A. C. Kak, “Spar: A Planner that Satisfies
Operational and Geometric Goals in Uncertain Environ-
ments,” Al Magazine 3061 (Spring 1990).

D. Joslin and J. Roach, “A Theoretical Analysis of Conjunctive-
Goal Problems,” Artif. Intell. 41, 97-106 (Nov. 1989).

D. Kibler and B. Porter, “Episodic Learning,” Proceedings of the
Third National Conference on Artificial Intelligence, Washing-
ton, D.C., AAAI, Menlo Park, Calif., 1983, pp. 191-196.

J. McCarthy and P. J. Hayes, “Some Philosophical Problems from
the Standpoint of Artificial Intelligence,” in B. Meltzer and D.
Michie, eds., Machine Intelligence, Vol. 4, Halsted, John Wiley
& Sons, Inc., New York, 1969, pp. 463—501.

D. A. McDermott, “A Temporal Logic for Reasoning about Pro-
cesses and Plans,” Cog. Sci. 6, 101-155 (1982).

A. Newell and H. A. Simon, “GPS, a Program that Simulates
Human Thought,” in E. A. Feigenbaum and J. Feldman, eds.,
Computers and Thought, McGraw-Hill, New York, 1963, pp.
279-293.

R. Power, “The Organization of Purposeful Dialogues,” Linguis-
tics 17, 107-152 (1979).

E. D. Sacerdoti, “Planning in a Hierarchy of Abstraction Spaces,”
Artif. Intell. 5, 115-135 (1974).

E. D. Sacerdoti, A Structure for Plans and Behavior, Elsevier/
North-Holland, New York, 1977.

R.C. Schank and R. P. Abelson, Scripts, Plans, Goals, and Under-
standing, Erlbaum, Hillsdale, N.J., 1977.

L. Siklossy and J. Dreussi, “An Efficient Robot Planner Which
Generates Its Own Procedures,” Proceedings of the Third
IJCAI, Stanford, Calif., Morgan-Kaufmann, San Mateo,
Calif., 1973, pp. 423-430.

M. Stefik, “Planning with Constraints (MOLGEN: Part I),” Artif.
Intell. 16, 111-139 (May 1981).

G.J. Sussman, A Computer Model of Skill Acquisition, American
Elsevier, New York, 1975.

A. Tate, Project Planning Using a Hierarchic Non-Linear Plan-
ner, Report No. 25, Artificial Intelligence Dept., University of
Edinburgh, Aug. 1976.

A. Tate, “Generating Project Networks,” Proceedings of the Fifth
IJCAI, Cambridge, Mass., Morgan-Kaufmann, San Mateo,
Calif., 1977, pp. 888—893.

A. Tate and A. M. Whiter, “Planning with Multiple Resource
Constraints and an Application to a Naval Planning Prob-
lem,” Proceedings of the First Conference on AI Applications,
Denver, Colo., 1984, pp. 410-416.

Reprinted from Ency
Copyright © 1992 by

Clopedia of Artificial Intelli
John Wiley & Sons, Ing, ——+"

S. A. Vere, “Planning in Time: Windows and Durations for Activ-
ities and Goals,” IEEE Trans. Pattern Anal. Mach. Intell.
PAMI-5, 246-267 (May 1983).

S. A. Vere, “Splicing Plans to Achieve Misordered Goals,” Pro-
ceedings of the Ninth IJCAI, Los Angeles, Calif.,, Morgan-
Kaufmann, San Mateo, Calif., 1985, pp. 1016-1021.

S. A. Vere and T. W. Bickmore, “A Basic Agent,” Comp. Intell.,
41-60 (May 1990).

D. H. D. Warren, “Generating Conditional Plans and Programs,”
Proceedings of the AISB Conference, University of Edinburgh,
1976, pp. 344-354.

R. B. Wesson, “Planning in the World of the Air Traffic Control-
ler,” Proceedings of the Fifth IJCAI, Cambridge, Mass., Mor-
gan-Kaufmann, San Mateo, Calif., 1977, pp. 473-479.

R. Wilensky, Planning and Understanding, Addison-Wesley,
Reading, Mass., 1983.

D. E. Wilkins, “Domain-Independent Planning: Representation
and Plan Generation,” Artif. Intell. 22, 269-301 (April 1984).

D. E. Wilkins, Recovering from Execution Errors in SIPE, Techni-
cal Note 346, Al Center, SRI International, Menlo Park,
Calif., Jan. 1985.

General References

L. Daniel, “Planning and Operations Research,” in T. O'Shea and
M. Eisenstadt, eds. Artificial Intelligence: Tools, Techniques,
and Applications, Harper & Row, New York, 1984, pp. 423-
452. Reviews STRIPS, NOAH, and NONLIN in detail, and
discusses their limitations.

M. Drummond and A. Tate, AI Planning: a Tutorial and Review,
Technical Report AIAI-TR-30, Al Applications Institute, Ed-
inburgh, Scotland, Jan. 1989. A recent survey that compares
15 major planners.

M. Georgeff, “Planning,” in Annual Review of Computer Science,
Vol. 2, 1987, pp. 359—400. A survey of planning from a theo-
retical perspective.

E. D. Sacerdoti, “Problem Solving Tactics,” Proceedings of the
Sixth IJCAI, Tokyo, Japan, Morgan-Kaufmann, San Mateo,
Calif., 1979, pp. 1077-1085. Discusses methods for improving
the efficiency of planners.

W. Swartout, and co-workers, “Summary Report,” Proceedings of
Knowledge-Based Planning Workshop, DARPA, Austin, Tex.,
Dec. 1987, A1-A23. Summary of a workshop to identify and
explore new directions for planning research.

D. E. Wilkins, Practical Planning, Morgan-Kaufmann, San Ma-
teo, Calif,, 1988. An in-depth exposition of the SIPE planner.

S. Vere
Lockheed Al Center

PLANNING, REACTIVE

Planning, in Al, refers to a body of techniques used to
automate the process of selecting and carrying out actions
to bring an environment to some desired state. In Classi-
cal Planning l[eg, STRIPS (Fikes and Nilsson, 1971),
NONLIN (Tate, 1975), DEVISER (Vere, 1983), TWEAK
(Chapman, 1987), an application domain is encoded in
terms of a set of primitive actions and their preconditions
and effects characterized as state predicates. A planning
problem consists of this domain description plus an initial

Second Edition,

1172 PLANNING, REACTIVE

and final (or goal) state. Planning in this framework con-
sists of searching through the space of action orderings to
find one which takes the initial state to the goal state.
This set of ordered actions is called the plan. The ‘blocks
world’ is the archetypical domain for classical planning: a
world consisting of a number of blocks which the agent
(usually thought of as a robot) can stack upon each other.
The agent is the only entity active in the environment,
and the configurations of the blocks are precisely known
at all times.

Many real-world application domains, particularly ro-
botic applications, do not have the static characteristics of
blocks world. Schoppers (1988) describes an example do-
main that contrasts strongly with the blocks world: his
‘baby world.” This domain is similar to the blocks world,
except it is inhabited by a “mischievous baby who will
flatten block towers, snatch blocks out of the robot’s hand,
and even throw blocks at the robot.” The crucial new ingre-
dients in this problem domain are that the agent (1) can-
not be certain of the effects of its actions, (2) cannot make
the assumption that the world remains static and un-
changing except when it carries out an action, and (3)
cannot assume that it knows everything about the world.
This is exactly the problem faced by a robotic machine
operating in the “real-world,” the same uncertain (see :
3) and dynamic (see 2) environment that humans inhabit
in everyday life.

Classical planning becomes too brittle in these applica-
tion domains (Kaelbling, 1986; Chapman, 1987; Brooks,
1986; Agre and Chapman, 1987) for two main reasons:
because the world can change while planning is in
progress, partial plans may be, thus, rendered useless;
and, because of the uncertain effects of actions, “correct”
plans actually may fail to achieve their goal. Chapman
(1987) summarizes the state-of-the-art in classical plan-
ning. He shows that classical planning, in the general
case, is undecidable, and even in its simpler forms can be
computationally intractable. Furthermore, Arbib (1981)
(see also ScHemA THEORY) has maintained for some time
that behavior should not be produced as the result of sym-
bolic reasoning from axioms, but rather as the result of
cooperation and competition between concurrent, active
agents called schema instances. His schema theory is a
bridge between Cognitive Science, Brain Theory, and Ar-
tificial Intelligence, and implementations of it have been
made by Lyons (1989), Ankin (1989), and Draper and co-
workers (1989), among others.

Work in building planning systems that can operate
well in application domains such as Schoppers’ “baby-
world” has shown up recently in a number of workshops
and conferences, eg, the 1986 Timberline Lodge workshop,
the 1988 Rochester Planning Workshop, the 1990 and
1991 AAAI Spring Symposia, and the 1990 Workshop on
Innovative Approaches to Planning, Scheduling, and Con-
trol. This work has been grouped together under the name
Reactive Planning. It has been noted that reactive plan-
ning is dangerously near a contradiction in terms, because
reaction is usually considered acting without planning.
The term reactive planning is used here to refer to tech-
niques developed to cope with the selection and execution
of actions to achieve objectives in an uncertain and dy-

namic environment. In one sense, the goal of this field is
to combine the advantages of a reactive system, robust-
ness, and time—critical response, with the advantages of a
planning system, look—ahead and global optimality. How-
ever, it can be argued that such integration may lead to a
redefinition of the meaning of both planning and reaction.
In the next section, the characteristics of the reactive
planning domain are described via a running example of
an automated tour guide. Subsequently, a selection of the
key reactive planning techniques and a description of how
they can be used to address the tour guide example is
presented. Finally, there is a summary of the state of the
field, and a discussion of what problems remain open.

CHARACTERISTICS OF THE REACTIVE
PLANNING DOMAIN

This section introduces the characteristics of the reactive
planning problem domain via a running example: an au-
tomated New York City tour guide. Basically, the duty of
a tour guide is to take the tour to a set of landmarks,
explain each one, and answer any questions. However, in
practice, there is more than this to being a good tour
guide. A tour guide must fulfill one of the most stringent
aspects of a reactive planning problem—he/she must be
prepared to act and interact at any time.

Reactivity

Continual vigilance is essential to a reactive system. For
example, a tour guide is continuously on duty once the
tour starts. The audience can ask questions about almost
anything at anytime, and the guide should be prepared to
respond. There are also a host of other tasks, such as mak-
ing sure everyone is back on the bus before going to the
next location, working around the changing weather, con-

- sidering the preferences of the audience, guarding the

general safety of the tourists, etc. The classical planning

approach involves the a priori complete or incremental

generation of a plan, which is then sent to a plan executer
to be carried out. A plan executer can do nothing without
a plan to execute. A reactive system needs to be able to
respond to the environment without necessary recourse to
plans.

Timely Activity

Coordination with externally imposed time constraints is
unavoidable in a reactive domain. For example, the tour
guide must deal with the fact that the timeliness of
actions is important. Specific opening hours of parks, mu-
seums, zoos, ete, must be considered if the tour is to re-
main on time, and in the rescheduling of events if there
are any disturbances to the tour. The tour can only stop
for a limited time at each location, and the next location
needs to be given to the bus driver in advance. Time con-
straints are involved in reactive planning in three ways:
(1) the agent must carry out actions in a timely fashion,
(2) the agent must consider the effects of time in choosing
which actions are appropriate, and (3) the strategy for
choosing the next action must also abide by time con-
straints. As an example of this third constraint, note that

the strategy for deciding where to go next can only occupy
some fraction of the time allocated to visit a location.

Uncertainty

Dealing with uncertainty is a fact of life for a reactive
system. A tour guide has a priori information at his or her
disposal. Nonetheless, making a tour plan in the sense of
the classical planning approach, a priori production of set
of actions and some ordering information, is out of the
question because the state of the environment and the
actions of other entities during plan execution time (ie,
the duration of the tour) are uncertain. Weather forecasts
tend to be imperfect, and the preferences and humors of
tour group members are notoriously fickle, not to mention
the traffic patterns of New York City! For example, a good
tour guide will visit outdoor locations, such as Central
Park, when it is dry. Indoor activities will be scheduled for
times when it rains. In New York City, this will occasion-
ally demand hasty improvisations. Improvising the com-
pletion of a tour will require that the guide think about
timely coordination with entities such as museums, parks,
and restaurants, as well as maintain an on-going interac-
tion with the audience. In such a case, it is better to keep
the audience dry and interested than to spend time deriv-
ing an optimal perturbed tour!

Improvisation and Interaction

Effective behavior in a reactive planning domain is the
result of the close interaction of agent and environment.
For example, special events, such as parades or street the-
ater, can be both a nuisance (for routes might have to be
changed) and an opportunity (to expose tourists to those
events) for a tour guide. A good tour guide should take
advantage of unexpected opportunities when possible.
This may mean adding new locations to the tour or select-
ing different paths between locations. With a human tour
guide, the description and emphasis of the talks delivered
at each location would also change. As another example, a
good guide asks the tourists for their preferences before
and during the tour, and may adapt the tour accordingly.
Thus, a good tour is not a sequence of actions carried out
by the guide on a passive audience, but rather a continual
interaction between guide and audience. It is less success-
ful to carry out a predetermined tour, hear the complaints
afterwards, and try to convince the complainers to take
another tour which will incorporate their wishes (ie, a
“recovery from error” paradigm).

Actually building an “automated” tour guide would re-
quire the application of many other areas of Alin addition
to reactive planning: speech-understanding, computer vi-
sion, tutorial-systems, cooperative problem-solving, user-
modeling, path-planning, redundant kinematics, etc. In
this example, the reactive planning component concerns
the selection and execution of actions appropriate to the
situation.

TECHNIQUES FOR REACTIVE PLANNING

This section discusses the techniques that have been de-
veloped for dealing with reactive planning problems. The

PLANNING, REACTIVE 1173

first work in this area dates from about 1986 (though the
inspiration could indeed be traced back to the STRIPS
Triangle Table work from the 1970s); and the field is still
far from solved. The techniques developed in this field can
be effectively classified into three groups, based on their
objectives:

1. Architectures for Reactive Machines. A reactive ma-
chine is a system in which the choice of the next action is
based on hardwired response to sensory input and built-in
goals. It differs from a classical plan executer in that it is
always ready to carry out actions; it is not waiting for a
plan to be loaded. Work in this area is in developing archi-
tectures, representations, and algorithms that can be used
in building reactive machines that exhibit intelligent and
robust behavior. This was one of the first areas of the field
to be explored. It produced the unexpected results that it
is possible to build a reactive agent that produces behav-
ior that an observer would classify as intelligent, despite
the lack of classical planning and reasoning in the agent.

2. Design of Reactive Machines. One of the first criti-
cisms of reactive machines was that their robustness and
intelligence really depended on the skills of the program-
mer who built them. This second area of reactive planning
responded by designing tools which automatically build
reactive systems to fulfill a set of desired criteria. The
machine generation stage is assumed to be off-line; a spec-
ification of the machine and its environment is written
and then input to the generation tool, which produces a
detailed description of the reactive machine.

3. Planning for Reaction. Another major criticism of
reactive machines is that they were “myopic”—unable to
rise above local responses to the environment. This third
area of reactive planning responded by trying to integrate
the concept of planning-ahead with that of reaction to the
environment.

Architectures for Reactive Machines

Chapman finished his TWEAK (Chapman, 1987) paper by
suggesting that improvisation might be a better paradigm
than planning. Agre and Chapman (1987) carried out the
first step on the road to building systems that can exhibit
intelligent behavior in uncertain and dynamic domains.
They argued that “before and beneath any activity of plan
following, life is a continual improvisation, a matter of
deciding what to do now based on how the world is now.”
They built a program, Pengi, based on these concepts.
Pengi played a video arcade game called Pengo. In a typi-
cal Pengo game, the computer appeared to hunt down tar-
gets, build traps, escape ambushes, take advantage of op-
portunities, and act in a timely fashion. However, the
intelligent behavior of Pengi was the result of the interac-
tion of relatively simple opportunistic strategies with a
complex, structured environment. Two key ideas devel-
oped for Pengi were the concept of routines and the con-
cept of indexical-functional representation.

Routines. A routine is a pattern of interaction between
agent and environment. A routine need not be explicitly
represented by the agent. It can simply be a property of

1174 PLANNING, REACTIVE

the regularity in the interaction between the environ-
ment and the agent. For example, tour groups exhibit
certain behavioral regularity: they may listen to the
guide, they ask questions, they wander off, etc. The tour
guide will typically explain some landmark, accepting
and responding to questions as they arise. This highly
interactive pattern is an example of a routine. Internally,
the tour guide may simply have rules that say “answer
any question asked” and “describe current landmark”.
The routine is cretited by the interleaved effects of these
rules driven off the behavior of the environment (tour
group). Recognizing and exploiting regularity in the envi-
ronment allows for the construction of simpler and more
robust agents that can effectively cope with uncertainty.

Indexical-Functional Representation. In an indexical-
functional representation [called deictic representation ih
the more systematic exposition in Agre (in press)], proper-
ties of the immediate environment are only represented in
terms of the impact they have on the objectives of the
agent. For instance, a tour guide may have to deal with
many people and many tours in any day. A classical plan-
ning approach would involve uniquely naming each indi-
vidual encountered, eg, PERSON-23. This introduces
combinatorics, since the space of persons must now be
searched for appropriate instances. A Pengi-like tour
guide would not uniquely name every person it encoun-
tered, but would only represent people in terms of their
impact on its objectives, eg, person-now-asking-question,
or person-in-danger-of-being-lost. The perceptual system
directly matches the environment with such indexical-
functional entities, and no search is required. Pengi used
a similar mechanism to measure directly from the envi-
ronment clues as to which actions to take next; these are
called indexical-functional aspects. A Pengi tour guide
might have such aspects as tour-becoming-bored (and
hence should be livened up), or street-theater-in-view
(consider diverting to look at it), ete.

Behaviors and Subsumption. Brooks (1986) noted that
the standard view of intelligent robot-control architec-
tures as pipe-lined collections of functional modules
caused problems with robustness, buildability, and test-
ability. He suggested a novel architecture, called the sub-
sumption architecture, that emphasized building intelli-
gent control from layers of task—achieving behaviors (see
Figure 1) much in the spirit of Braitenberg (1984). He
built a number of robot systems (Brooks 1986, 1987, 1989)

11| —
s.mm—-ggggg—*

Sensors ——p

that exhibited behavior similar to Pengi: they appeared to
act in a robust intelligent way in complex environments.
And like Pengi, they consisted internally of simple oppor-
tunistic control rules.

Brooks built his systems as networks of augmented fine
state machine modules. Each module can accept input,
has internal state, and can produce output. In addition,
the output of a module can be inhibited or the input sup-
pressed and replaced. (Brooks associates a time interval
with the inhibition and suppression, which will be omitted
in the simple examples here). For example, a particularly
simple tour guide could be described by two connected
modules: Local-Wander, which produces random heading
signals, connected to a Move which when given a heading
will move in that direction. A subsumption architecture is
a hierarchy of such behaviors. High-level behaviors sub-
sume the behaviors of lower levels but add in some extra
behavior where appropriate. If we consider the “wander-
move” behavior as a level zero subsumption architecture,
we can build a level one architecture that “directs” the
lower level when appropriate, but otherwise remains si-
lent (see Fig. 2).

Level 1 consists of a counter (Up Counter) that indexes
through the list of landmarks, suppresses the local wan-
der behavior to force the guide to each location, and then
triggers a speech at that location. While the guide is at a
location, the local wander behavior becomes unsuppressed
and the guide wanders around the landmark. This is a
more useful tour guide, but it is still rather inflexible. We
can add a third level that allows for reorganization of the
schedule should the weather turn nasty, eg, Figure 3. If
bad weather is seen by the Weather module, it inhibits the
counter output and replaces it with the index to a land-
mark that is known to be indoors.

Goals and Beliefs. Nilsson (1988) has put forward an
action network structure for teleoactive agents. These
agents take changing environmental and goal conditions
into account before acting. A strong motivation for this
work was the dissatisfaction with conventional action con-
trol methods, where higher level units surrender control
when they activate a lower-level unit and have to suspend
until control is explicitly returned. This scheme can cause
low level units to continue to operate in situations for
which they are no longer relevant, since changes in situa-
tion go unnoticed by the suspended higher levels. To over-
come this, Nilsson proposed a new scheme for organizing
behavior based on networks of combinatorial circuits in

Reason about behavior of objects

Plan changes to the world
Identify objects
Monitor changes
Bulld mﬁu
Explore
Wander
Avold objects

Figure 1. The traditional architecture vs the subsumption architecture.

. LEVEL 1
tour voice
done| Up counter Landmark list || Speech i
index
heading | done
LEVELO
headi
Local wander __ng_c Move

Figure 2. Levels 0 and 1 of a Subsumption tour guide.

which higher level routines enable lower level ones but do
not surrender control, In addition, he developed a lan-
guage, ACTNET, that allows a user to specify these con-
trol networks as networks of combinatorial circuits. The
goals and beliefs of an agent are explicitly represented in
this network. The planning component of a network is
‘built-in’ in the sense that goals are hard-wired to fire
particular actions.

The basic unit in Nilsson's network is an action unit
(see Fig. 4). An action unit is a logical gate that decides
whether to fire a particular action based on the goal re-
quest G, the absence of goal establishment (the purpose P)
and the preconditions P; of the action. An action unit con-
tinually monitors its input, and fires the action as soon as
it is applicable and executable. Goals, as well as precondi-
tions, can be dynamic in nature (“talk so loud that all the
tourists can hear it” is dependent on the background noise
level). Networks are constructed by tying together the
signals representing the goals, preconditions, etc, in an
appropriate fashion. Higher level networks can enable
lower level ones by turning on their purpose input.

As an example of network, consider the case of a tour
guide trying to show the Empire State Building (ESB) to
the group (see Fig. 5). This goal fires two primitive goals,
ie, at_ESB and present.ESB_speech via action-unit
Show_ESB. These establish the goals for the units
move_to_ESB and present_ESB_speech. Since pres-
ent_ESB_speech has as its precondition at_ESB, it
has to wait until the other action unit move_to_ESB has
established that precondition.

In later work Nilsson (in press) generalizes the notion
of action networks to structures that reactively execute
sequences of goal-seeking actions, and develops a lan-
guage for programming such structures. Whereas action
units achieve their goals single-handedly, teleo-reactive

n LEVEL 2
vision bad
l Weather } Indoor sites .| index
pew LEVEL 1
done| Up counter Landmark list Speech
[indes”C . g
heading [done
LEVEL O
headi
Local wander idb_. Move

Figure 3. Levels 0, 1, and 2 of a Subsumption tour guide.

PLANNING, REACTIVE 1175

Purpose ——_l

Preconditions

—————= Action

T

Figure 4. Nilsson's Action Unit.

structures eventually achieve their effects by condition-
ally enlisting other teleo-reactive structures or actions to
achieve necessary subgoals.

Monitoring Change. In dynamic worlds, change pro-
ceeds regardless of the agent’s state. Therefore, keeping
track of the state of affairs is a nontrivial task in such
domains. Hendler's DR [Hendler (1989), Sanborn and
Hendler (1988)] is an approach to managing observations
and actions in dynamic domains. In DR, monitors are em-
ployed to keep track of the environmental situation. A
monitor is an independent information gathering compo-
nent of the overall reasoning system that maintains the
world model. The duty of a monitor is to report significant
events.

Monitoring is coupled to reaction via constraints re-
porting. Every action has a set of constraints on its execu-
tion state. Constraints are divided into inhibitory con-
straints that prevent an applicable action from executing,
and enabling constraints that allow an applicable action
to execute. Action selection is based on the active con-
straints. If an enabling constraint is found on an action,
then that action is performed. If an inhibitory constraint
is found on an action, then the action is suspended and
another applicable action is pursued until the constraint
is removed.

Design of Reactive Machines

Reactive machines produce intelligent, but improvised,
behavior, and were a major step forward in addressing the
problem of acting in uncertain and dynamic environ-
ments. They respond quickly and robustly, and can be
surprisingly intelligent given their lack of internal
models. However, much of the power of a Brooks-style

AT T ¢ o e)
—+= at_ESB ‘j—|
movil
move_to_ESB "
l_—l+_ at_ESB
_LESBgshown
show_ESB jl'
show_ESB
—1= group 1= nt_ESB h e
compiete | alprie i
ESB_
BELIEFS GOALS
L~

Figure 5. Part of a Tour Guide Action Network.

1176 PLANNING, REACTIVE

Action
Descriptions

Wanted
Situation

Initial

Situation -

Action
Descriptions

Figure 6. (a) The Classical vs (b) the Universal Plan ap- it

proach.

robot, for example, comes from the skill with which the
behaviors have been designed and composed together in
the subsumption architecture. A major portion of work in
reactive planning tries to develop techniques to design
formally correct machines, and provide tools for automati-

cally generating a reactive machine to suit a set of design
criteria.

Universal Plans: The Autogeneration of Reactive Ma-
chines. The Universal Plan (Schoppers, 1987) is an ap-
proach to building reactive machines as highly condi-
tional plans. It is a plan that can achieve a goal given any
possible initial state of the environment. In this approach,
actions are selected through the classifications of the ac-
tual situation encountered at execution time, as opposed
to the classical approach of selecting actions based on a
single initial situation at planning time. In a universal
plan, the failure of an action to achieve its predicted ef-
fects does not require replanning, only the selection of a
new initial point from which to execute the plan. (See
Fig. 6.) Therefore, the task of a planner has changed from
generating a sequence of actions, to anticipating all possi-
ble situations and the concomitant appropriate responses.
At execution time, a sensing module recognizes the actual
situation and selects the appropriate action to perform.

For example, a (simplified) universal plan for a tour
guide showing the Empire State Building (ESB) is shown
in Figure 7. The goal, to have the landmark shown to the
tour, initiates the two subgoals at_ESB and ESB_speech
(by the action SHOW_ESB). Carrying out the universal
plan consists of examining the truth values of these two
goals. If either goal is not true, then an appropriate uni-
versal plan is employed to achieve that goal (in order). For
instance the universal plan for at_ESB is to move to the
location (MOVE_TO_ESB), but only on the condition that

[Es8_shown | [aess | :,E F::'
subplan to
SHOW_ESB MOVE_TO_ESB T

l group complete] [ESB_speech]

ASSEMBLE_GROUP PRESENT_ESB_SPEECH

Figure 7. A Universal Tour Guide.

Failure Situation

(a)
Current Situation

Plannin, Sensin _I_L D
g = sing — Effecting

(b)

the group is already complete. If this condition does not
hold, then the group must first be assembled. Notice that
failure of the action MOVE_TO_ESB, for any reason,
results in the predicate at_ESB remaining false. This al-
lows the action to be attempted again without replanning.
Once the group is at the location, the guide can then pur-
sue the other goal of actually presenting the history of the
building.

Situated Automata: Formally Correct Reactive Machines.
The situated automata model of Rosenschien and Kael-
bling (1986, 1987, 1988) has influenced many workers in
the field of reactive planning. This model addresses the
issues of real-time performance and provably correct be-
havior. A program in this model is a finite machine with
internal state that transforms inputs to outputs within a
small time period. It therefore provides a good base on
which to build reactive systems. A Lisp-like language,
called Rex, was developed to specify such machines. The
output of a Rex program is a description of 4 digital circuit
for a machine that meets the Rex specification.

A key characteristic of the situated automata model is
the correctness with which the machine’s potential behav-
ior is addressed by considering the knowledge that the
machine contains, where knowledge is analyzed in terms
of the relationship between a machine and its environ-
ment. A machine is defined to know a proposition ¢ in
machine state s, if in all states s, ¢ is satisfied. Given a
Rex program, a background theory describing facts about
the environment, and a description of the epistemic mean-
ing of the machine inputs, the situated automata model
provides a methodology for attacking the problem of veri-
fying the meaning of the machine outputs.

Kaelbling (1988) describes a compiler, Gapps, that
maps a goal specification and set of goal reduction rules, to
a Rex program, for a machine to achieve these goals. The
goal reduction rules capture domain specific information.
In this fashion, a correct reactive system can be automati-
cally generated off-line.

Planning for Reaction

A crucial problem with any reactive machine is that
should the environment diverge from that in which the
machine was designed to operate, then the machine may
produce inappropriate behavior. The best a reactive ma-

chine can do in the face of such a change is to degrade
gracefully; that is, its responses may not be as efficient or
appropriate in the new environment, however, these re-
sponses will not result in self-destruction. To address this
problem completely, it is necessary to integrate the con-
cept of the reactive machine with the concept of a priori
planning. Note that these two concepts have some comple-
mentary characteristics: a reactive machine is not able to
look ahead and plan, while an on-line, time-constrained
planner cannot react quickly enough to deal with unex-
pected hazards. In this section we look at some approaches
to integrating a planning component with a reactive ma-
chine.

Time Constraints on Planning. Interaction with a dy-
namic world forces time-constraints onto both planning
and reaction. Reactive systems can usually cope with
these constraints, however, it is more difficult for plan-
ners. Dean and Boddy (1987) introduced the class of ANY-
TIME algorithms to deal with time-dependent planning.
An algorithm has the ANYTIME property if it can handle
preemption, will return a sensible answer at any time
when terminated, and, most importantly, will return an-
swers which improve monotonically over time. The design
of ANYTIME algorithms plays a key role in many ap-
proaches to reactive planning.

Integrating Planning and Reaction in a Hierarchy.
Hendler (1990) notes the conflicting needs of reactors and
planners: the reactors need input that closely matches the
external world and need to respond on a very short time-
scale, the planners need to abstract away from the details
of the external world and may need to work for some time
on a problem. The solution suggested is a hierarchy as
shown in Figure 8, based on the DR model discussed ear-
lier. A scheduler chooses planner or reaction agents on a
time permitting basis.

To investigate this scheduling approach, Spector and
Hendler (1988) propose a model in which planning and
reaction interact across five different levels: sensory/mo-
tor, spatial, temporal, causal, and conventional (ie, gen-
eral world knowledge). This multilevel reasoning is real-
ized in a parallel, blackboard-based planner called APE
(Abstraction Partitioned Evaluator). As an example of

Planning

TIME ALLOTTED

Reacting

FREQUENCY OF SCHEDULING
Figure 8. Hendler's Planning-Reaction hierarchy.

PLANNING, REACTIVE 1177

Reductor
o sansig
Advice on -
Projector Appropiate Behaviors FBaitor World
New SCRs
Behavioral Actions
—— Constraints

Figure 9. ERE Reductor-Projector-Reactor architecture.

how APE would reason, suppose that the tour guide has a
plan for conducting a tour that includes visiting the Em-
pire State Building. Upon arrival however, the tour guide
sees an excessive line for entrance to the Empire State
Building. This would first be reported as a problem at the
spatial level. Replanning at that level is then immedi-
ately attempted (eg, find another, shorter line), but if that
fails, then the problem is passed to the next highest level
for solution and so on. During higher level reasoning, the
tour guide would be using more of its resources on those
levels, and would be less able to react to change in the
environment, thus the propagation of information to
higher levels only occurs when time (and the environ-
ment) permits.

Planning to Guide Reaction. Bresina and Drummond
(1990) introduce an alternative approach to systems that
produce intelligent action under time constraints. Their
domain of application is photoelectric telescope schedul-
ing problems. They suggest an architecture, called ERE,
that combines the ability to react to the current environ-
ment with the ability to plan ahead. Their system consists
of three independent and concurrent components (see
Fig. 9): a reactor, based on Drummonds plan-net formal-
ism, that reacts to the current environment; a projector,
that determines the future effect of possible next actions,
and advises the reactor on which ones best satisfy the
systems objectives; and a reductor that advises the projec-
tor about which possible next actions are the appropriate
ones to explore given the systems objectives (ie, the Re-
ductor provides search control to the Projector).

The ERE architecture evolved from Drummond’s work
on the plan-net formalism (Drummond (1986)). This for-
malism is based on net theory (Peterson, 1981), and was
designed to provide the ability to represent iterated
actions and the sensory effects of actions. For example, the
fact that a tour guide can deliver a speech about some
landmark only if he/she is at that landmark and he has
not delivered the speech before on that tour is represented
by the plan—net of Figure 10. Circles represent conditions
that must exist. Boxes represent events. When arcs join
conditions and events, this denotes that the conditions
enable the events. When arcs join events to conditions,
this denotes that the events cause the conditions. There is
much more to plan-nets than this condition-event theory,
but this is sufficient for our examples. The net in Figure
10 demands that the tour guide be at a landmark x, at
which a speech has not previously been given, done(x),
before the action-event speech can occur. Once the action

1178 PLANNING, REACTIVE

at (x)

O /O edified-listeners (x)
s

\O done ()

Figure 10. Example Plan-Net.

- done (x)

occurs, a physical change to the world occurs because the
speech has happened, and the internal representation of
the tour guide is updated to include done(x).

An ERE Reactor component for a tour guide that
presents landmarks at random is given by the set of one
instance of each of the three nets in Figure 11 for each
landmark location x € Landmarks. The first net is simply
the speech net of Figure 10. The second net ‘motivates’ the
tour guide to visit new landmarks. The third net models
the fact that a tour will get wet if it visits an outdoor
landmark while it is raining. In any given situation s, the
Reactor derives the set of actions that can be carried out
by the tour guide. These are simply the set of actions that
are enabled in the plan-net by the situation s, enabled(s).
One of these is chosen nondeterministically and carried
out,

This Reactor is capable of exhibiting all tour behaviors.
However, it does so in a myopic fashion, since its only
criterion for selecting actions is that they be enabled. The
objective of the Projector component is to use a description
of the Reactor’s plan-net to determine, in this case, which
tours are acceptable given the current environment and a
set of desired behavior constraints.

For example, consider an automated tour guide which
has explicit instructions not to get the tour wet. For all
worlds in which it doesn’t rain, the Reactor is capable of
fulfilling this constraint. However, should the world
change and it starts to rain, then the Reactor will not obey
this constraint on its own. This constraint, expressed in
ERE’s behavioral constraint language, would be (prevent
tour-is-wet tour-start-time tour-end-time). Using esti-
mates of the probability of conditions and the utility of
actions, the Projector component projects forward in time
the effects of action sequences that could be selected from
the Reactor’s plan-net (Drummond and Bresina (1990) de-
scribe a theory of temporal projection based on these plan-
nets). When it finds the first sequence that obeys the be-

at(x) () < = () edified-listeners (x)
-peech X
= done (x) () () done (x)
=at(x) ()
Move to (x) at (x)

at (x) O

—indoors () tour-gets-wet () tour-is-wet
raining)

Figure 11. ERE Tour Guide.

havioral constraint, it compiles a set of Situated Control
Rules (SCRs) and sends them to the Reactor. These are if-
then rules that offer the Reactor advice on the best subset
of enabled(s) to carry out to keep in line with the behav-
ioral constraint. In our example, the SCRs would advise
the next acceptable place to go, ie, that subset of en-
abled(s) where indoors(s) is true. Once the Projector has
found one good sequence, it continues by inspecting other
less likely conditions and again updating the Reactor with
SCRs when available. The nature of Projector-Reactor in-
teraction is as follows: Without any planning, the Reactor
should be able to give some sort of a tour; with some plan-
ning, the Reactor should be able to give, say, a single
acceptable tour; and with lots of planning, the Reactor
should be able to give many different acceptable tours
(one tour being selected over another depending on vari-
ous environmental circumstances).

Planner and Reactor as a Coupled System. Lyons and
Hendriks and co-workers (1990, 1991) address the prob-
lem of planning for reaction by considering a Planner and
a Reactor as two elements of a concurrent, cooperating
system. The Planner interacts with, and is influenced by,
the Reactor, in the same fashion that the Reactor inter-
acts with, and is influenced by, the World. This architec-
ture is shown in Figure 12. This reactor component is
based on a special purpose model of computation devel-
oped for representing highly conditional robot plans. The
model, called R, is an extension of the Robot Schemas
model of Lyons and Arbib (1989) and inherits the philoso-
phy of Arbib’s schema theory (Arbib, 1992). It sees behav-
ior as the result of the cooperation and competition of a set
of interacting schema instances. The model is process-
based, and process—algebra methods (Hoare, 1985) are
used to analyze the process network behaviors. Processes
can be defined in terms of networks of other processes,
grounding out with a set of atomic, pre-defined, processes.
This provides a powerful mechanism for specifying flexi-
ble, hierarchical structures. They make the point that to
analyze the behavior of reactive machines it is very neces-
sary to know in what sort of environment the machine
will be situated. Thus, in reactive machine analysis, the
%Y model is used to represent both the plan (or controller)
and the environment in which the plan will be carried out
(Lyons, 1990).

An R¥ Reactor is specified by a set of recursive process
equations, where processes can be coupled in networks in
two ways: (1) they can communicate messages to each
other via communication ports, or (2) they can be com-
posed together using several kinds of process composition
operators. An RY tour guide reactor, TourGuide, that

ﬁm’wm\‘ Actions

PLANNER

REACTOR WORLD

N ZRNCT

Figure 12. Planner-Reactor-World system.

PLANNING, REACTIVE 1179

TourGuide | -~ INewTour

Traverse, l

Present,

tours landmarks in some arbitrary order is illustrated in
Figure 13, and defined algebraically as follows:

Traverses; = (Done?, , Randomg(nl)) : (MoveToy ; Tra-
Verses il)

Presents = Atg(l) : ((Dospeech;,AnswerQ) ; Done, ;
Presents_‘)

TourGuide = NewTour:(Traversey,;,,Present;); TourGuide

The Traverse network consists of the concurrent net-
work that selects the next landmark to visit, nl, from the
set of landmarks, S, while monitoring for when the cur-
rent landmark has been completed; it then signals a move
to the new position, after which it recurses. The Present
network consists of a monitor process that reports when
the tour guide is first at landmark [and then concurrently
interleaves delivering the landmark speech, Dospeech
and question answering, AnswerQ. When these are fin-
ished it signals the landmark is done, and recurses. (The
interaction between Done? and Done is a typical applica-
tion of R message passing.) The reactor network, Tour-
Guide, recursively activates a concurrent combination of
Traverse and Present for each new tour. Recursion of Tra-
verse and Present is bounded using the conditional compo-
sition operator (denoted ‘’). (Conditional composition is
special kind of sequential composition in which the second
process is only created if and when the first process termi-
nates successfully; if it aborts, then the composition
aborts. If Random and At abort when given an empty
argument, then the above reactor recursion is bounded).

The Planner “tunes” the Reactor so that the concurrent
composition of Reactor and the world model, World, con-
tinue to produce appropriate behavior. The full system is
then a concurrent composition of the Planner and the Re-
actor-World system: (Planner,(Reactor,World)). By con-
sidering a Reactor to be a set of concurrent situation-la-
beled actions, Lyons and Hendriks formally define what it
means for the Planner to improve the behavior of the Re-
actor over time. The Planner cycles continuously, making
changes to the Reactor in accordance with the definition of
Reactor improvement. The Planner does not have access
to the complete internals of the Reactor; its observations

Figure 13. RY Tour Guide Reactor.

are restricted to the output of perception processes that it
can embed into the Reactor. Thus, the Planner can ignore
the bulk of the sensing carried out by the Reactor, and
concentrate on a few important pieces of information. Per-
ception processes are used to (1) determine when some
part of the Reactor is in danger of failing, (2) reflect on-
going resource usage, and (3) determine whether certain
goals or subgoals have been met.

For example, if during a tour, clouds start moving in, a
perception process may signal this to the planner. From
this information, the Planner deduces the possibility for
rain and therefore the possibility of the tour getting wet if
it is at an outdoor location. Therefore, it reasons to adapt
the Reactor by changing the Traverse network to restrict
the selection of landmarks to only indoor ones when it is
raining, while retaining the full choice otherwise. After
sending down this adaptation to the Reactor, the latter
has become self-sufficient to deal with rain or sun shine,
and the Planner doesn’t need to worry about weather
changes again. In this fashion, the Planner can use the
Reactor to focus its reasoning, and in turn the Reactor is
guided by the Planner to improve its behavior.

DISCUSSION AND REMAINING PROBLEMS

Reactive planning is still a young field. It has established
alternatives to classical planning when operating in an
uncertain and dynamic environment; however, no single
reactive-planning paradigm has emerged yet. What has
emerged is a number of themes that will be important to
this field.

1. Reactive machines can behave intelligently and ro-
bustly. They work best when they can be designed to
exploit an environment. This results in what Agre
and Chapman call routines, patterns of behavior
that are goal directed, but which are not repre-
sented explicitly in the agent, rather they are
brought about as a consequence of the interaction
between agent and environment. The terms situated
activity and emergent behavior refer to similar phe-
nomena.

1180 PLANNING, REACTIVE

2. A number of concepts have been developed to help
build reactive machines: indexical-functional repre-
sentation, behaviors and subsumption; decentral-
ized, concurrent decision making; and formal analy-
sis of agent and world as a coupled system.

3. The main critique on the approach of achieving re-
active behavior by the a priori design of reactive
machines (as voiced by Ginsberg, 1989) is that of the
enormous computational complexity, both at design
time (as the machine should have an appropriate
action for every possible situation) and execution
time (as the sensing system must be able to identify
all aspects of the world that distinguish situations).
The latter, however, can be partially remedied by a
decision-tree approach to the determination of the
actual situation in which the agent finds itself
(Schoppers, 1987). From an efficiency viewpoint,
however, there is a problem in that large parts of
the plan are irrelevant (as most situations are very
unlikely to occur), yet all achieve equal attention
during the design phase.

4. The weaknesses of reactive machines are clear: they
can be very myopic and there are limits to their
robustness. Some form of additional, longer-term
reasoning is necessary. However, it is an open ques-
tion as to how to integrate reactive machines and
longer-term reasoning. The importance of having
planning and reaction as concurrent, interacting ac-
tivities has become evident.

There are still a lot of open questions in this area, and
of course, much work in other fields of planning, non-
monotonic reasoning, robotics, ete, also impacts reactive
planning. We list here just a few of the open areas:

1. There has been little work in integrating the reac-
tive machine work with the extensive real-time
computation field,

2. Resources play a key role in many reactive do-
mains—the concept of ‘making do’ with what is
available—but as yet there is no unique reactive
viewpoint on resources.

3. There are a number of suggestions, but no definitive
answers yet, on an appropriate way to view long-
term ‘planning’ so as to integrate it with reaction.

4. Learning can play a key role in increasing the scope
in which a reactive planning system can operate.
There appears to be a synergy between reaction and
learning (Sutton, 1990; Mitchel, 1990). For exam-
ple, the learning component of Sutton’s Dyna occu-
pies a similar place in his architecture to the plan-
ning component in Bresina and Drummond’s ERE.

BIBLIOGRAPHY

P. E. Agre, The Dynamic Structure of Everyday Life, Cambridge
University Press, Cambridge, U.K., in press.

P. E. Agre and D. Chapman, “Pengi: An Implementation of a
Theory of Action,” in Proceedings of the 6th National Confer-
ence on Artificial Intelligence, Santa Cruz, Calif., AAAT, Menlo
Park, Calif., 1987, pp. 123-154.

M. A. Arbib, “Perceptual Structures and Distributed Motor Con-
trol,” in V. B. Brooks, ed., Handbook of Physiology—The Ner-
vous System II. Motor Control, Amer. Physiological Society,
Bethesda, Md., 1981, pp. 1449-1480.

R. C. Arkin, “Motor Schema-Based Mobile Robot Navigation,”
Int. J. Rob. Res. 8(4), 92-112 (Aug. 1989).

V. Braitenberg, Vehicles, MIT Press, Cambridge, Mass. and Lon-
don, UK., 1984,

J. Bresina and M. Drummond, “Integrating Planning and Reac-
tion,” in J. Hendler, ed., AAAI Spring Workshop on Planning
in Uncertain, Unpredictable or Changing Environments, Stan-
ford Calif., Mar. 27-29, 1990, Systems Research Center, Uni-
versity of Maryland, College Park, Md.

R. Brooks, “A Robust Layered Control System for a Mobile Ro-
bot,” IEEE J. Rob. Aut. RA-2(1): 14-23 (Mar. 1986),

R. Brooks, “A Hardware Retargetable Distributed Layered Archi-
tecture for Mobile Robot Control,” in IEEE International Con-
ference of Robotics and Automation, Raleigh, N.C., 1987.

R. Brooks, “A Robot that Walks; Emergent Behaviors from a
Carefully Evolved Network,” Neural Computation, 1(1)
(1989).

R. Brooks, “Intelligence without Representation,” Artific. Intell.
47(1-3), 139-160 (Jan. 1991).

D. Chapman, “Planning for Conjunctive Goals,” Artific. Intell. 32,
333-377 (1987).

T. Dean and M. Boddy, “An Analysis of Time-Dependent Plan-
ning,” in Proceedings of the 10th International Joint Confer-
ence on Artificial Intelligence, Morgan Kaufman, San Mateo,
Calif., 1987, pp. 49-54.

B. A. Draper, R. T. Collins, J. Brolio, A. R. Hanson, and E. M.
Riseman, “The Schema System,” Int. J. Comp. Vis. 2(3), 209—
250 (1989).

M. Drummond, “A Representation of Action and Belief for Auto-
matic Planning Systems,” in Workshop on Planning & Rea-
soning about Action, Timberline, Oreg., 1986, pp. 267-289.

M. Drummond and J. Bresina, “Anytime Synthetic Projection:
Maximizing the Probability of Goal Satisfaction,” in Proceed-
ings of the 9th National Conference on Artificial Intelligence,
July 29-Aug. 3, 1990, AAAI, Menlo Park, Calif., 1990.

R. E. Fikes and N. J. Nilsson, “Strips: A New Approach to the
Application of Theorem Proving to Problem Solving,” Artific.
Intell. 2, 189-208 (1971).

M. Ginsberg, “Universal Planning: An (Almost) Universally Bad
Idea,” A Mag., 40-44 (Winter 1989).

J. Hendler, “Real-time Reaction for Planning Systems,” in AAAT
Spring Symposium on Planning and Search, March 1989,
AAAI, Menlo Park, Calif., 1989, pp. 24-26.

J. Hendler, “Abstraction and Reaction,” in J. Hendler, ed., AAAT
Spring Workshop on Planning in Uncertain, Unpredictable or
Changing Environments, Stanford, Calif., Mar. 2729, 1990,
Systems Research Center, University of Maryland, College
Park, Md., 1990.

C. A. R. Hoare, Communicating Sequential Processes, Interna-
tional Series in Computer Science, Prentice-Hall, New York,
1985.

L. P. Kaelbling, “An Architecture for Intelligent Reactive Sys-
tems,” in Workshop on Planning & Reasoning about Action,
Timberline, Oreg., 1986, pp. 235-250.

L. P. Kaelbling, “Goals as Parallel Program Specifications,” in

Proceedings of the 7th National Conference on Artificial Intelli-
gence, St. Paul, Minn., 1988, AAAI, Menlo Park, Calif., 1988,
pp. 60—65.

D. M. Lyons, “A Formal Model for Reactive Robot Plans,” in 2nd
International Conference on Computer Integrated Manufactur-
ing, RPI, Troy, N.Y., May 2123, 1990.

D. M. Lyons and M. A. Arbib, “A Formal Model of Computation
for Sensory-Based Robotics,” IEEE Trans. on Robotics Auto-
mation 5(3), 280-293 (June 1989).

D. M. Lyons, A. J. Hendriks, and S. Mehta, “Achieving Robust-
ness by Casting Planning as Adaptation of a Reactive System,
in IEEE International Conference on Robotics and Automa-
tion, Apr. 7-12, 1991, IEEE, New York, 1991.

D. M. Lyons, R. Pelavin, A. Hendriks, and P. Benjamin, “RS: A
Formal Model for Reactive Robot Plans,” in J. Hendler, ed.,
AAAI Spring Symposium on Planning in Uncertain and
Changing Environments, Stanford, Calif., Mar. 27-29, 1990,
Systems Research Center, University of Maryland, College
Park, Md., 1990.

T. Mitchell, “Becoming Increasingly Reactive,” in Proceedings of
the 9th National Conference on Artificial Intelligence, Boston,
Mass., July 29-Aug. 8, 1990, AAAI, Menlo, Calif., 1990, pp.
1051-1058.

N. J. Nilsson, “Action Networks,” in J. Weber, J. Tenenberg, and
J. Allen, eds., From Formal Systems to Practical Systems,
Dept. of Computer Science, University of Rochester, Roches-
ter, N.Y., 1988, pp. 21-52.

N.J. Nilsson, “Toward Agent Programs with Circuit Semantics,”
unpublished.

J. L. Peterson, Petri-Net Theory and the Modelling of Systems,
Prentice-Hall, New York, 1981.

S. Rosenschein, “Synthesizing Information-Tracking Automata
from Environmental Descriptions,” in R. Brachman, H. Leves-
que, and R. Reiter, eds., Proceedings of 1st International Con-
ference on Principles of Knowledge Rep and Reasoning, May
1989, Toronto, Canada, Morgan Kaufman, San Mateo, Calif,,
pp. 386-393.

S. J. Rosenschein and L. P. Kaelbling, The Synthesis of Digital
Machines with Provable Epistemic Properties, Technical Note
412, SRI International, Menlo Park, Calif., April 1987.

J. Sanborn and J. Hendler, “A Model of Reaction for Planning in
Dynamic Environments,” Al in Eng. 3(2), 95-102 (1988).

M. J. Schoppers, “Universal Plans for Reactive Robots in Unpre-
dictable Environments,” in Proceedings of the 10th Interna-
tional Joint Conference on Artificial Intelligence, 1987, Mor-
gan Kaufman, San Mateo, Calif., 1987, pp. 1039-1046.

M. Schoppers, Representation and Automatic Synthesis of Reac-
tion Plans, Report, Dept. of Computer Science, University of
Illinois, Urbana-Champaign, Ill., 1989.

L. Spector and J. Hendler, “An Abstraction-Partitioned Model for
Reactive Planning,” in Y. Wilks and P. McKevitt, eds., Fifth
Rocky Mountain Conference on AI, Computing Research Labo-
ratory, New Mexico State University, Las Cruces, N.M., June
1990.

M. Stefik, “Planning with Constraints (Molgen: Part 1); and Plan-
ning and Meta-Planning (Molgen: Part 2).” Artific. Intell. 6,
111-170 (1981).

R. Sutton, “First Results with Dyna,” in J. Hendler, ed., AAAI
Spring Symposium on Planning in Uncertain and Changing
Environments, Stanford, Calif., Mar. 27-29, 1990, Systems
Research Center, University of Maryland, College Park, Md.,
1990.

A. Tate, “Generating Project Networks,” in Proceedings of the 5th

POPLOG 1181

International Joint Conference on Artificial Intelligence, Cam-
bridge, Mass., 1977, Morgan Kaufman, San Mateo, Calif.,
1977, pp. 888-893.

S. Vere, “Planning in Time: Windows and Durations for Activi-
ties and Goals,” IEEE PAMI, 5(3), 246267 (1983).

D. E. Wilkins, “Domain-Independent Planning: Representation
and Plan Generation,” Artific. Intell. 22(3), 269-301, 1984.

D. M. Lyons
A. J. HENDRIKS
North American Philips Corp.

A synopsis of the diverse work in this field would not have been
possible without the cooperation of other researchers. The au-
thors thank the following people for their insightful comments
and helpful discussions: Phil Agre, Michael Arbib, Marc Drum-
mond, Jim Hendler, Nils Nilsson and Marcel Schoppers.

PLAUSIBLE REASONING. See REASONING, PLAUSIBLE.

POLITICS

A system that simulates human ideological understand-
ing of international political events, POLITICS was writ-
ten in 1979 by Carbonell at Yale University and is a suc-
cessor to MARGIE and a predecessor to BORIS (qv) (see J.
Carbonell, “POLITICS,” in R. C. Schank and C. K. Ries-
beck, eds., Inside Computer Understanding: Five Pro-
grams Plus Miniatures, Lawrence Erlbaum, Hillsdale,
N.J., 1981, pp. 259-307).

M. R. Tae
AT&T Bell Laboratories

POPLOG

POPLOG is an Al environment for teaching, research,
and product development. It provides a vehicle for imple-
mentation of multiple languages based on a common vir-
tual machine from which machine-code for target ma-
chines is generated, and which provides a “compiler
toolkit” for further language development. It is designed
to realize Al technology on standard hardware. Its hard-
ware requirements are moderate; it needs no special-
purpose architecture and has an executable image that
can be below 1 MB. Yet unlike most LISP systems, it is
capable of exploiting the full addressing capability of 32-
bit machines. POPLOG is used to “rescue” Al applications
that have “run out of steam” on a restricted vehicle, such
as an expert systems shell.

The system was developed at Sussex University and
incorporates fundamental work by Edinburgh University
on languages for Al It provides the following integrated
capabilities:

1. POP-IL. The system implementation language is de-
rived from Burtstall and Popplestone’s POP-2 (see
R. M. Burstall, J. S. Collins, and R. J. Popplestone,

1182 POPLOG

POP-2 Papers, Edinburgh University Press, 1968).
(See POP-11.) It provides symbolic processing.

2. PROLOG. The POPLOG Virtual Machine was de-
veloped by Gibson and Hardy and is descended from
the Elliott 4130 designed by Hoare and co-workers
(which was the target machine for the first imple-
mentation of POP-2). As a result of a collaboration
with Mellish, POP-11 and Prolog were implemented
as intercallable languages, sharing one environ-
ment on the VAX computer.

3. Common LISP. The implementation by Williams
was originally oriented toward providing a secure
and convenient implementation of the language; it
has subsequently been tuned to exploit the code-
generating capabilities of the Virtual Machine.

4. ML. This strongly typed functional language has a
stylistic relationship to POP-2 and PROLOG, and is
based on the work of Darlington, who developed the
use of recursion equations as a functional equiva-
lent to the logic clauses embodied in PROLOG. The
type inference system, due to Milner, supports poly-
morphism and thus obviates much of the strait-
jacket that earlier type-systems (such as that of
Pascal) placed on expressivity. The Poplog imple-
mentation is by Nichols and Duncan.

5. VED. An integrated editor compiles selected code
incrementally and supports the online documenta-
tion. Operating in either native or EMACS mode,
this operating system interface implements a range
of system calls interactively and uniformly and al-
lows access to significant Unix and VMS capabili-
ties.

6. Compiler toolkit. Supports the implementation of
new languages within the environment and allows
the user to create efficient code by calling a stand-
ardized set of code-planting procedures. The planted
code operates on a POPLOG virtual machine, which
provides the capabilities required for POP-11, Com-
mon Lisp, and PROLOG,

The anticipated market role of X-windows has effected the
recent evolution of POPLOG. The product has evolved to
align itself with a C-based approach to X. While CLX is
supported, it is not seen as primary, and the major empha-
sis has been in supporting OpenLook and Motif in addi-
tion to a native POPLOG widget set. This in turn has had
an impact on the virtual machine architecture, in order to
enhance compatibility with C. In order to support callback
from C to the POPLOG languages, data-structures man-
aged by the garbage collector can be orthogonally given a
“fixed” attribute which causes them to be nonrelocatable,
thus avoiding one of the notorious pitfalls of interworking.
POPLOG pointers and C-pointers are now identical, since
the “dope” information required for the Al languages is
placed before the location pointed to. Moreover, a capabil-
ity of describing structures in POP-11 that are fully com-
patible with C-structures has been provided. [See also C.
Mellish and S. Hardy, “Integrating Prolog into the POP-

LOG Environment,” in Proceedings of the Eighth IJCAI,
Karlsruhe, FRG, 1983.

RoBiN PopPLESTONE
University of Massachusetts

POP-11

This language is derived from Burstell and Popplestone’s
POP-2 (see POPLOG). It provides symbolic processing and
is the system implementation language. The original
POP-2, although owing most to the early work on LISP by
McCarthy and co-workers, was influenced syntactically by
Algol 60 and semantically by Strachey’s CPL and Lan-
din’s ISWIM. It provided a uniform name-space encom-
passing both functions and data, closures by lambda-
lifting, and (in 1971) continuations. It was the original
implementation language of the Boyer-Moore theorem
prover (see R. S. Boyer and Moore J. Strother, A Computa-
tional Logic, Academic Press, New York, 1979). POP-2
supported work on structure-sharing in implementations
of Robinson’s resolution and a pioneering study in the
integration of vision and touch in robotics. Another as-
pect, due to Michie [D. Michie, Memo Functions and Ma-
chine Learning, Nature 218, 19-22 (1968)] was memoiza-
tion of functions, permitting flexible, user controlled
trade-offs between space and time.

Technological developments underlying POP-2 in-
cluded incremental compilation supporting interactive
computing, a uniform space for atoms and lists under the
control of a generalized relocating garbage collector, and a
restricted form of lightweight process, which supported
the use of POP-2 as a command language for the Multipop
time sharing system. Modernized as POP-11 by Sloman
and Hardy, the language has taken on board lexical vari-
ables (from Scheme) and the representation of numbers of
Common LISP. The syntax was made more redundant as a
means of catching errors earlier in the program develop-
ment process, and an on-line help system provides hun-
dreds of help files covering languge features and various
aspects of Al, with hypertext-like cross-linking.

Rosin PoppLESTONE
University of Massachusetts

PREDICATE LOGIC. See LoGIC, PREDICATE.

PREFERENCE SEMANTICS

Preference semantics (PS) had its philosophical origins in
Wilks (1971, 1972) who argued that

1. To have a meaning is to have one from among a set
of possible meanings.

2. Giving meaning is the process of choosing or prefer-
ring among those.

