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Abstract

This paper introduces an approach that allows an agent to exploit inherent patterns of interaction
in its environment, so-called dynamics, to achieve its objectives. The approach extends the standard
treatment of planning and (re)action in which part of the input to the plan generation algorithm is
a set of basic actions and perhaps some domain axioms. Real world actions are typically difficult
to categorize consistently and are highly context dependent. The approach presented here takes
as input a procedural model of the agent’s environment and produces as output a set of action
descriptions that capture how the agent can exploit the dynamics in the environment. An agent
constructed with this approach can utilize context sensitive actions, “servo™ style actions, and
other intuitively efficient ways to manipulate its environment.

A process-algebra based representation, RS, is introduced to model the environment and the
agent’s reactions. The paper demonstrates how to analyze an RS environment model so as to
automatically generate a set of potentially useful dynamics and convert these to action descriptions.
The output action descriptions are designed to be input to an Interval Temporal Logic based
planner. A series of examples of reaction construction drawn from the kitting robot domain is
worked through, and the prototype implementation of the approach described.

1. Introduction

In this paper we address the problem of constructing an agent capable of producing
intelligent action in an uncertain and changing environment. The challenge the agent
faces is to carry out tasks given new opportunities or difficulties that arise in the
environment. The approach we propose is to construct agents that exploit inherent
patterns of interaction in the environment to achieve their objectives. Chapman [6] calls
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such a pattern a dynamic, and that usage is adopted here also, A dynamic may not be
entirely controllable nor predictable by the agent; nonetheless, the agent can work with
it to achieve its objectives in an intuitively efficient manner.

In previous work, we have developed the planner-reactor architecture as an approach
to building such agents [19]. The Teactor component of the planner-reactor handles
uncertainty in the environment using reactions—hard-wired combinations of sensing
and action—to “servo” out uncertainty. The planner component provides the deliberative
capabilities to update the reactor component to best suit the current environment. It

the encountered instantiations of the problem domain.

The proposed approach, in contrast, derives additional, context-sensitive actions from
an analysis of dynamics in the environment and how they interact with the basic sensory
and motor actions available to the agent. A procedural model of the environment,
representing the interactions between parts of the environment and the agent, is required
for this analysis. The result of the analysis is a set of high-level action descriptions
suitable for the ITL-based planner. Although the planner constructs reactions from these
action schemas in a straightforward manner, the action schemas themselves ensure that
the generated reactions can exploit context-sensitive actions, “servo” style actions, and
other intuitively efficient ways to manipulate the environment.

Like Horswill [13], our objective is to allow the agent to take advantage of special
features of the environment. His habitat constraints allow a designer to simplify the
design of an agent so as to exploit its “niche” in the environment. Our approach is an
attempt to automate the identification and use of a class of such constraints, namely
constraints that express how an agent can exploit processes at work in the environment.

The proposed method for generating action schemas has a number of advantages.
The construction of a good reactive system depends on the designer understanding the
kinds of activities in which the environment engages. This information is not captured
well by the classical planning concept of a set of basic action descriptions. Real actions
for dealing with dynamic events are typically highly context dependent and difficult to
categorize into a discrete set in a consistent and useful way. The proposed approach can
handle such unseparable and context sensitive actions, since the dynamic provides the
separation and the context of the action.

The remainder of this paper is laid out as follows. In the next two sections our
previous work on the planner-reactor framework is introduced, and the motivation for
investigating the problem of identifying and exploiting dynamics discussed. Section 3
introduces the concept of dynamics and of exploiting dynamics to achieve objectives. It
includes a motivating example from our application domain, the kitting robot. Section 4
introduces the two formal representations used in the paper: the RS language and In-
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terval Temporal Logic. This section explains the mechanisms for identifying dynamics
and selecting reactions. Section 5 uses this formal framework to investigate exploit-
ing dynamics in three kitting domain problems: visual tracking, guarded motion, and
interaction with a conveyor belt. Section 6 describes the implementation of the approach.

2. The planner reactor framework

Reactive systems, e.g. [1,5], were introduced to address the fragility of classical
approaches to plan generation and execution in an uncertain and changing environment.
Previous work in constructing reactions has occurred in two fields: Learning better
reactions based on feedback from the environment, e.g., DYNA [31], MD [7]; and the
generation of reactive plans based on a model of the environment, e.g., the Universal
Plan generator [25], ERE [4]. We are concerned with this latter area: constructing
reactions or reactive plans. One solution to this problem has been to construct “off-line”
systems, such as Kaelbling’s GAPPS [14] and Schoppers’ Universal Plan generator
[25], that automatically generate reactive machines to suit a goal specification. Another
response was to build systems, such as Hendler’'s APE [29], Arkin’s AURA [3] and
Bresina and Drummond’s ERE [4], that integrated reactive and deliberative capabilities.

Our application domain is robotic kitting [27]. A kitting robot is a robot system that
puts together assembly kits—trays containing all the necessary parts from which to build
a specific product. Simpler and cheaper automation can construct the assemblies once
they have been placed in the kits and routed appropriately. The key characteristic of the
kitting robot is not so much its ability to reason about assembly, but rather its ability
to choose timely and effective actions to suit an uncertain and changing environment.
To deal with events as they happen, the kitting robot needs to be capable of real-
time, reactive response. On the other hand, to deal with changes in the environment
(e.g., bursts of errors in parts, or failures of resources) or new goals issued by factory
management, the kitting robot needs to be able o plan ahead “on the fly”.

The definition of planning that we espouse is somewhat similar to that of Bresina and
Drummond [4] and McDermott [23]: a planner is a module that continually modifies
a concurrent and separate reactive system so that its behavior becomes more goal
directed. The reactive component of the system will be referred to as the reactor after
the terminology established by Bresina and Drummond. Fig. 1 illustrates our planner-
reactor architecture. A reactor, a network of sensory-motor reactions, interacts directly
with an uncertain and changing environment. The planner is a concurrent and separate
module that monitors the reactor and its environment by issuing perception requests
to the reactor. (These are distinct from the reactor’s sensory actions.) When, in the
planner’s view, the reactor structure will not produce behavior that conforms to the
planner’s goals, the planner issues adaptations, structural changes to the reactor, to bring
reactor behavior back into line with the goals. The planner can generate novel reactions
and “add” them into the reactor, as well as remove existing reactions from the reactor,
in a safe manner. Planner and reactor communicate asynchronously.

The specific focus of this paper will be on the planner problem of generating novel
reactions for the reactor that exploit the dynamics in the environment. However, to
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Fig. 1. The planner-reactor architecture,

explain the motivation for addressing this problem, a little additional detail on the
planner-reactor work is necessary. The “full story” can be found in [19-21].

2.1. Reactor

The reactor contains a network of reactions. A reaction is a sensory process (or
network) composed with an effector process (or network) in such a fashion that should
the sensory process detect its triggering condition, then it will in turn trigger the effector
process. The key property of the reactor is that it can produce action at any time. Unlike
a plan executor, a reactor can act independently of the planner; it is always actively
inspecting the world, and will act should one of its reactions be triggered. A reactor
should produce timely, useful behavior even without a planner. '

2.2. Planner

The planner is completely separate from, and concurrent with, the reactor. Rather than
seeing the planner as a higher-level module that loads plans into a lower-leve] executor,
we see the planner as an equal-level module that continually tunes the reactor to produce
appropriate behavior (Fig. 1). The interaction between the planner and reactor is entirely
asynchronous,

The input to the planner includes: a model of the environment in which the planner is
operating; a description of the reactor’s structure; and information from the user about
objectives the reactor should achieve (e.g., in the kitting problem domain, geometric
goals such as kit layouts) and constraints the reactor should obey in its behavior (e.g.,
batch mix or resource usage constraints). The planner continually determines if the
reactor’s responses to the current environment would indeed conform to the objectives.
If not, then the planner makes an incremental change to the reactor configuration—
adding in novel reactions, or deleting old reactions—to bring the reactor’s behavior
more into line with the objectives. The planner module has been implemented in a
conventional manner using an ITL interval reasoner [19]. However, we found that
approach to be somewhat limiting, as Section 2.4 will report, and this motivated the
study of the approach proposed in this paper.
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2.3. Planner-reactor interactions

As indicated in Fig. 1, there are two routes of interaction between planner and reactor.
An adaptation is essentially an instruction to delete part of the reactor structure or to add
in some extra structure. Each individual adaptation should be small in effect and scope;
large changes in reactor behavior only come about as the result of iterated adaptation.
Large adaptations would be equivalent to downloading “plans” to the reactor; something
we need to avoid.

Perceptions are sensory data collected by the reactor to be sent to the planner. The
knowledge needs of the planner and reactor are almost always different. The reactor
uses sensory data to determine whether to fire its reactions. The planner needs sensory
data to allow it to predict the future progress of the environment and the status of the
reactor.

In [22] we demonstrate how it is possible to construct a reactor that can be adapted
in a simple and concise manner. In [20] we describe how to make these adaptations in a
safe manner despite the fact that the planner does know when or which reactions might
be firing. In [19] we formalize the iterative improvement of a reactor by a planner to
explore convergence. This latter paper gives the architecture of the ITL-based planner.

2.4. Generating reactions

The planner employed in the planner—reactor work [19] has some special features:
it needs to consider repeated improvement of a reactor, and it reasons about building
reactions as process networks. Nonetheless, it is conventional in that it expects a set of
action schema, describing the basic domain actions, as part of its input.

Our experience was that this input severely restricted the reactions that could be
devised by the planner. Many of the potentially useful modes of interaction with the
environment were hidden by the choice of domain actions. One approach to solve this
problem is to develop a very general set of basic actions. This is far from trivial, since
real actions for dealing with dynamic events are typically highly context dependent and
difficult to categorize into a discrete set in a consistent and useful way.

An alternate approach is to give the system a model of the environment and ask it
to identify useful modes of interaction with its environment to achieve a given goal.
This environment model needs to capture the interaction topology between parts of the
environment as well as between the environment and the agent. This approach has the
additional advantage that the designer’s focus then becomes the building of an accurate
environment model, rather than the devising of the correct view or interpretation of the
environment for the agent, as seen through a set of action descriptions. It also has the
advantage that the devised actions do not need to be consistent across different tasks,
since they are extracted from the environment model on a per task basis, or even in the
same task over time, since the processes at work in the environment may change over
time.

The remainder of this paper is based on this second approach. A method will be
introduced for automatically identifying dynamics, and for generating action descriptions
based on the identified dynamics, which can be given as input to our ITL-based planner.
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3. Planning to reactively exploit the environment

3.1. Modeling the environment as a set of processes

We will represent the environment model as a set of concurrent, communicating
processes (in the computer science sense of the word). The key information that this
procedural model captures is the interaction topology: what parts of the environment “are
connected to” other parts and how “messages” are passed along those communication
links. This kind of world model does not contain information about the current state
of the world! such as e.g., (at-position object26 0.25 0.34 0.29); rather it contains
information about how objects interact with each other, or how an object interacts with
the agent’s visual input sensors. In other words, the model describes the structural
and temporal regularities, the patterns of interaction in the environment and how they
evolve over time. The environment model may be partial and/or may contain uncertain
information.

Modeling a dynamic environment as a set of processes is analogous to the approach
taken by Hendrix [11] and in Qualitative Process Theory [9]. The sole mechanism
assumption of QP-theory (but equally valid for Hendrix’s work) states that all changes
in (physical) systems are caused directly or indirectly by processes. Our modeling of
the environment also subscribes to this assumption. This modeling only restricts the
amount of interaction. It does not necessarily prescribe it, since the processes may
contain uncertainty, e.g., random motion of objects, or the unpredictable occurrence of
events such as a new object being introduced.

3.2. Exploiting dynamics

Constructing agents that reactively exploit their environment to achieve their objectives
differs in some important aspects from the standard approach of building agents that
plan and act to achieve their goals. In the latter approach, actions are considered similar
to building blocks, which must be composed together in some ordering so that the agent
can force the environment to a desired state. The first consequence of this viewpoint is
that, because it demands well-defined “blocks”, it guides a designer to choose actions
that have a one-to-one mapping with effects on the environment.

Unfortunately, the actions typically available to an agent are not so well behaved—
their effects are usually context dependent and they may indeed produce uncertain
effects. Proper modeling of the effects and applicability conditions of such actions is
very difficult for a designer; it may require elaborate descriptions encompassing extensive
qualification axioms (e.g. Ginsburg [10]) or Causal Theories (Shoham [28]). More
importantly, in this approach to action modeling the range of environments in which
the agent operates must be known a priori, and an encountered environment which is
slightly different can render such a model incorrect.

The second consequence is that it leads a designer to naturally considering the space of
all compositions of the building blocks as the space in which to look for plans, i.e., tasks

L At least, not primarily.
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which require a servoing behavior, achieving an objective through repetitive actions, are
rarely considered. Schoppers [26] has begun to address this type of behavior. However,
he chose to make the dynamics of the environment explicit in his action descriptions in
terms of temporal soon and sust operators, modeling the servoing aspect of an action
only as an uncertain completion time.

The approach proposed in this paper, exploiting environment dynamics, extends the
traditional planning viewpoint principally in that it enriches an agent’s action repertoire
by inspecting the (procedural) model of the environment and looking for useful inherent
patterns that an agent can capitalize on. Chapman [6] calls these patterns dynamics,
and that usage is also adopted here. Dynamics are structural or temporal regularities
of the environment. They exist independent of the agent and are essentially acausal. A
simple example from the kitting robot domain is of a conveyor belt carrying parts past
the robot. A part on the belt will start by being drawn inexorably towards the robot;
after a certain time, it will be within the robots workspace; and, if it remains on the
belt, a certain time after that it will be irrecoverably gone.

Some dynamics admit participation by the agent. That is, the actions available to the
agent can be affected by and/or can affect the course of the dynamic. This is a much
weaker concept that the notion of an event being within or partially within an agent’s
control [24]. For example, the motion of the belt may indeed be beyond the control
of an agent. Nonetheless, an agent can participate in this dynamic to acquire an object.
To participate in a dynamic, an agent must be capable of knowing about, or sensing
components of, the dynamic and of producing actions that affect, or are affected by,
the dynamic. For example to exploit the belt dynamic to acquire an object, the kitting
robot needs to be able to tell when the part is in its workspace and it needs to be able
to take a part from the belt. We say that an agent participates in a dynamic to achieve
an objective when it uses a reaction triggered off the dynamic to carry out some action
that in conjunction with the dynamic achieves the objective. Note that this allows us
to utilize actions whose effects are context dependent, since the dynamic resolves the
context. As will be shown later on, the generated reactions capture “closed loop” control
law behavior, as opposed to plans generated in traditional planning approaches, which
are essentially “open loop” strategies.

3.3. Example: the tracking reaction

To explain the concept of exploiting dynamics, consider the simple tracking environ-
ment shown in Fig. 2. This environment contains a number of objects. The objects may
be moving, and that motion is beyond the control of the agent. The environment also
contains a camera, the orientation of which can be controlled. If an object is in view,
the camera will report the position of that object. We will assume that the agent has an
object of type T in view initially, and that its objective is to know the position of this
(possibly moving) object at all times.

The procedural model of this tracking environment TEM and the agent’s reactor are
shown in Fig. 3. (The formal representation for these will be described in a later
section.) The central line denotes the sensory-motor interface of the agent. Above the
line are the agents reactions. Below the line is the model of the environment. Reactions
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and environment model interact only through the sensory-motor interface. In the reactor,
of course, these reactions will affect, and be affected by, the actual environment the
agent is in. The entire contents of Fig. 3 would be contained “inside” the planner and
constitute its model of the environment and of the reactor.

The agent has access to the environment through its sensory-motor interface. This
interface is a set of communication channels, ports, through which the agent can either
affect the environment by transmitting a control value, €.8., a setpoint for a robot,
or obtain information by receiving a value, e.g., the position of an object, given that
the camera process is prodded to look for objects. For the agent to receive sensory
information, it has to explicitly perform a sensing action, which is modeled as “hooking”
into one or more of its sensory interface ports. This contrasts with systems such as ERE
[4] and RAPS [8], where a hidden sensory subsystem continually updates a database
with knowledge about the world, which the agent can access for free. This latter solution
is only viable if the knowledge needs of an agent can be satisfied by sensing that is
performed independent of the agent’s course of action. At best this is inefficient. In the

information, and possibly missing deadlines, while the sensing system is updating other
pieces of knowledge ( knowledge perhaps irrelevant to the agent’s current needs).
The tracking environment model consists of a process representing the agent’s visual
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sensor Camera, and some number of object processes, Object. The Camera process
accepts communication on a port, angle, which selects the pose of the camera and select,
which tells the camera the type of object the agent is interested in. If an object of the
selected type is in view at the angle the camera is currently set to, then the position
of that object is returned on the port pos. Camera determines what objects are in view
as follows. It has communication port connections to all existing Object processes
(only one such process is shown in Fig. 3). These processes represent objects in the
environment. Each Object process continually reports its position and type to Camera,
which applies a function InView based on the select and angle values to determine if a
selected object is in view. The position of any object in view is echoed back on pos.

The agent can acquire position information via its sensory interface port pos. To
find out what kind of information this port contains, it’s necessary to trace back the
connections from this port through the processes in the environment, and possibly back
to the motor interface ports (in this case angle and select). As we trace back, we
can annotate the connections with the conditions under which they actually transmit
information. (The formalization of this analysis in our process model will be explained
presently). For now, say that the connection from the Camera to the pos port is only
transmitting whenever an object of type T is in the field of view of the camera, as
determined by the condition InViewanglepos-

Thus, in order to keep receiving information on port pos the agent has to keep this
condition true. In other words, we have extracted a condition that should be the loop
invariant for the tracking reaction. An example of a tracking reaction that maintains this
invariant is as follows: The agent continually reads in the position of an object on port
pos, transforms this position to a camera angle and transmits that angle to the motor
interface port angle.

4. Representing and analyzing environments

To put the approach on a more formal footing, the following problems need to be
addressed:

(1) A concise language for specifying environment models needs to be developed
(the “input™).

(2) A concise language for specifying action schemas needs to be developed (the
“output”).

(3) A method for identifying dynamics, based on the environment model language,
needs to be designed.

(4) A method for translating identified dynamics into action schemas needs to be
designed.

4.1. A concise language for representing environment models
RS is a formal model of computation targeted at sensory-based robotics [16, 18].

Plans, actions and world models are all represented in RS as hierarchical networks
of concurrent processes. Techniques for analyzing RS process networks to capture the
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interaction between plans and environments have been developed [15,17,19]. Process
networks allow us to more easily capture the recursion or interaction that is central
to dynamics. However, RS doesn’t help us to mechanize the automatic generation of
reactions. For that we make use of an Interval Temporal Logic ( ITL) based on Pelavin’s
model [24]. ITL on its own has difficulty capturing recursion. We will show that the

mix of these two formalisms allows us to identify useful dynamics and then select
reactions that achieve the objectives.

4.1.1. Processes in RS

A description of a process, or network of processes, is called a schema. For example,
Joint,(x) denotes a process that is an instance of the schema Joint with one ingoing
parameter v and one outcoming result x. A process can terminate either successfully
(stop) or unsuccessfully (aborts). Networks are built by composing processes together
using several kinds of process composition operators. These allow processes to be
ordered in various ways, including concurrent, conditional and iterative orderings. At
the bottom of this hierarchy, every network must be composed from a set of atomic,
pre-defined processes. The set of basic schemas defines what processes are atomic.

RS notation has a process algebra [12] style: processes are specified as algebraic
compositions of other processes. The relationship between this and state-machine models
of computation is well understood. A process is essentially a state-machine; for RS a
process is a special kind of automaton called a port automaton. A process composition
operation is an instruction on how to combine automata: more specifically, how to
combine state-transition graphs. Thus, RS provides a way to build processes without
ever explicitly mentioning states. This allows us to avoid some of the problems of
state-based approaches to representing and reasoning about actions [24].

4.1.2. Composing processes

We will make use of four atomic composition operations, namely, sequential, con-
current, conditional and disabling, and two non-atomic composition operations, namely,
synchronous recurrent and asynchronous recurrent.

Sequential composition is used to enforce a strict ordering on operations. For example,
ensuring that parr2 is always placed after partl, T= Placepam ; Placey,m.

Concurrent composition indicates that two or more processes should be carried out
concurrently. This allows us to represent a lack of ordering between activities, e.g., T =
Place,am | Placepum, or actions which need to be done simultaneously, e.g., squeezing
an object obj with two fingers f1 and f2, T m ApplyForcey . | ApplyForceﬁ‘abj.
The process T terminates once all its arguments have terminated.

Concurrent processes can communicate with each other via communication ports. Two
special basic processes are defined for this purpose: IN,(v) reads a value from port p
and can pass it on through its result v; OUT,, writes the value v out on port p. All
port communication is synchronous? and there can be fan-in and fan-out on ports. For

? Asynchronous communication can be built from dynamic process creation plus synchronous communication.
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example, if X, = IN, and Y, = OUT,,» then N =X, | Y, is a network of an input process
in parallel with, and connected to, an output process 3 .

Conditional composition allows the construction of networks whose behavior is con-
ditional. The network of T = P:Q behaves like P;Q iff P terminates successfully. If P
aborts, then Q is not carried out, and T aborts. For example, in LidOpen,,, : Place, .,
whether Place is carried out or not depends on whether LidOpen terminates success-
fully or not. Conditional composition can be used to pass results between processes in
a “pipelined” fashion. If X, = IN,(v) : A, the value read in on the port p is used as a
parameter to the process A.

Disabling composition allows one process to terminate another. The network T = A#B
behaves like A | B except that it terminates whenever any of its arguments terminates.

Finally, two useful non-atomic composition operations are defined in terms of these
four: synchronous recurrent A:;B = A - (B;(A:;B)), and asynchronous recurrent
A::B=A: (B|(A::B)). Synchronous recurrent composition is similar to while-loop
iteration. Asynchronous recurrent composition does not iterate, but rather “spawns” off
a set of concurrent processes every time its “condition” is satisfied. These special forms
of guarded recursion are useful (and can be implemented efficiently).

One technique for analyzing process networks is based on the algebraic properties of
these compositions operators. These properties can be used to develop a set of “process
identities” that can be used to rewrite networks into alternate forms (e.g., simplify
networks). One such technique that we will make reference to in the next section is to
rewrite a network so that all “local” processing is hidden and treated simply as a time
delay. For example, in the network T = INp(u) : Ay(v) : OUT,, if the process A does not
use the ports p and g, then from the perspective of communication on these ports, A is
local. The network can be written as T = IN,(u) : Delay, : OUT,, r(uy, for some time ¢
and mapping f.

The network STREAM,, = OUT,, :;STOP will reappear often in our examples. This
network offers to transmit the value v on the port y infinitely often.

4.2. A concise language for representing action schemas

We have already developed a planner based on an interval temporal logic (ITL)
similar to that described by Pelavin [24]. Thus, the output of our proposed dynamics
identification system should be compatible with the action schema input language for
this planner.

Formulae in our ITL language are first order logic predicates augmented with a
modal operator @, e.g., InView(P)@il specifies that the predicate InView(P) should
be evaluated over interval /1. In addition the special predicate ITL( intervall, itlrelation,
interval) is used to specify constraints between intervals, e.g., ITL(il, [e], i2) specifies
that the interval i1 should denote the same interval of time as i2, with e denoting equal.
Other relevant time relation are s for starts, d for during and f for finishes. The i

3 The concept of a port variable, a variable referring to a port, is being used here in place of the port
connection relation used in previous RS work, eg., [18].
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postfix denotes the inverse and including more than one relation denotes disjunction of
the relations (see [2] for more details).

Processes are described by action schemas which specify executability conditions and
effects (executability conditions are generalized “pre”-conditions which may specify
constraints that must hold while the process is executing). For instance, below, the
specifications are given for the processes LOOK (outport) and MOVECAMERA (inport).

The process LOOK has one output port outport, which will hold the position information
of the object, if it is in view.

atp.actionschema LOQOK
output: outport
intervals i1,i2
executability: InView(obj) @ i2 and

ITL(i2, [si e di £i],LOOK)
effects: ObjectPosition(outport) @ LOOK
endactionschema

(We will assume that every action schema has an associated interval of the same name
that refers to the interval of execution of the process). The process MOVECAMERA is
similarly defined but has an input port inport, which needs position information about

the object, and will keep that object in view as long as that port has the up-to-date
position of the object.

atp.actionschema MOVECAMERA

input: inport

intervals i1,i2

executability: ObjectPosition(inport) @ i1 and
ITL(i1, [si e di fi], MOVECAMERA)

effects: InView(obj) @ MOVECAMERA
endactionschema

Note that the ports inport and output “carry” the (possibly changing) position infor-
mation of the object. In addition to predicates denoting static information and process
models, the planner can accept rules specifying consistency conditions, e.g., that only
one process is allowed to transmit information to a port.

Reactions are straightforward to construct when the component actions are represented
as producing or consuming port values over an interval in this continuous way. Consider
constructing a TRACKING reaction that moves the camera to maintain an object in
view. The output port of LOOK always has the current position of the object if that
object is in view of the camera, If we place the position of an object on the input port
of MOVECAMERA then the camera will be moved so as to place that object in view.
Carrying out these actions concurrently, with the ports connected, allows us to ensure
that the current position of the camera is always set to the current position of the object
and thus ensure that the object is always kept in view.
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4.3. A method to identify dynamics

4.3.1. Process evolution

To analyze how process networks (world models and/or plans) execute over time, it is
important to be able to derive how networks evolve as component processes dynamically
terminate. To this end, we introduce the evolves operator. We say that process P evolves
into process Q under condition ) if P possibly becomes equal to § when condition O

occurs; we write this as P —2 Q. If there is a set of processes that P can possibly
become equal to on condition ¢, then P necessarily becomes equal to exactly one of
these when ¢ occurs.

To define the evolves operator, we need two pieces of information: First, we need to
know for each basic process under what conditions it terminates. Second, we need to
know for each composition operator, how the composition is affected by the termination
conditions of each argument process.

The conditions under which the basic process P terminates successfully will be written
{}P. In some cases, we will also need to use the conditions under which P terminates
unsuccessfully, i.e., aborts itself; these necessary (but not sufﬁcicnt“) conditions we
write as UP.

We start by defining single-step evolution; this captures the concept of the very
next single process creation/termination change that a network can undergo. Consider
a sequential composition of processes T = P1;P2, where P1 and P2 are basic. This
network can only change as follows

aP1vuP1
—

PR3 P2.

Le.,, P1;P2 always evolves into P2 whether P1 terminates successfully or aborts. In
this fashion, we can define the way in which evolves interacts with all the composition
operators. Appendix B contains the full description of this interaction.

A specific network P might be capable of more than one possible next evolution. We
define the set of next possible evolutions as

poss(P) = {(c,Q) such that P — Q}. (1)

In general we will be interested in the ultimate effect of a single chain of successive
one-step evolutions. Thus, we define the evolves operator as the transitive closure of a
chain of one-step evolutions:

PﬂPiﬁPQ—%...ﬂrQﬁPLQ where ¢ =cl.c2.c3... .cn. (2)

We write temporal ordering of conditions using a period, e.g., A.B is read A then B.
The set of all possible evolutions is the transitive closure of poss(P) over the one-step

evolves operator (analogous to the concept of “reachability” and the “reachable set” in

linear systems theory). We can define this recursively in terms of one-step evolution as

“ A process can also be forced to abort in disabling composition “#”,
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“every network that can be reached in one evolution plus everything that can be reached
from there”, or, equivalently, in terms of the transitive evolves operator as:

poss™(P) = {(c,Q) such that P - Q}. (3)

4.3.2. Process limits

To pull out dynamics from an environment model, we need to understand how that
environment behaves in the following sense. We need to understand how sensory input
reflects change in the model, and ultimately how that change is related to motor output
(if it is). That is, we need to construct something equivalent to the usual transfer function
of linear systems theory: the result of transitively closing all the internal evolution steps
between the motor and sensory interfaces. For a set of reactions, this gives us a sensory
input to motor output mapping; for an environment model, it gives us a motor output to
sensory input mapping. The concept of process limits and bound processes is introduced
below as an approach to pulling out dynamics from an environment model expressed in

A process limit is a process that has evolved from the initial process, but cannot
evolve any further. The significance of the limit is that it prevents any further change of
behavior by the process. Any process may have zero or more limits; we call the set of
limits of a process P, limitset(P); this is a subset of poss*(P):

(¢, Q) € limitset(P) (i) P —<Q, and )
(ii) there exists no (cr, B) st g =5

The evolves operator provides us a way to determine process limits. In the case that
a process does have limits, then we can use evolves to “simulate” the execution of the
network until we reach a limit. To get all the limits of a network we need to produce
poss* for the network. Therein lies a problem: If the process is in an endless loop,
however, then the “simulated” execution will also be in a loop! This can be addressed
by stopping the production of poss™ whenever a process recursion is detected. In the
remainder of the paper, limitset(P) will refer to this augmented concept: all the process
limits plus any recursive process invocation by P.

A process, such as Q in the above definition, that does not evolve to anything, we
call a bound, since it may bound the evolution of any process it occurs in. Any basic
process that never terminates is a bound. The basic processes STOP and ABORT are also
bounds. Strictly speaking, whether or not a process is a bound is just a question of its
definition. However, we will find it convenient to also designate specific processes as
bounds for the purpose and duration of some analysis. Such processes will be referred
to as pseudo-bounds.

Let EM be an RS model of the environment, i.e., a process network. First, we treat
any sensory processes in EM as pseudo-bounds. That is, whenever one of those processes
is produced in the evolution of EM, then the evolution will 2o no further, and this bound
and the conditions under which it was evolved, will become part of the limitset. This
will tell us the ultimate sensory process(es) produced due to any motor input or any
environment changes. This will also tell us about internal cycles in the environment,
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Fig. 4. Timing characteristics.

€.g., the motion of an autonomous object, since recursive process invocations are now
also contained in the limitset.

We will look at a number of examples of limitset generation in Section 5 and our
implementation of limitset generation is discussed in Section 6.

4.4. Translating dynamics into action schemas

In Section 4.2 we discussed the actions LOOK and MOVECAMERA and noted how
easily they could be reasoned given the assumption that their associated ports contin-
uously carried data values. Recall that our objective is to build action schemas such
as these two by combining the basic sensory and motor capabilities of the agent with
dynamics in the environment. The tool introduced to extract dynamics is the RS lim-
itset. The limitset is a discrete concept and will tell us about the sequence processes
and/or of values on a port. Before we can reason in the aforementioned fashion with
ITL formalizations like LOOK MOVECAMERA we need to be able to say when discrete
port communication can approximate a continuous signal.

The intuition here is that if a value is produced sufficiently often, then it is a reasonable
approximation to continuous. So, the first criterion is that the network producing the
value must be in a “loop”, continually producing new values. The second criterion
is that new values must be produced “often enough”. We will begin by introducing
some canonical network forms that produce outputs in a continual sequence with some
associated time delays. These definitions will formalize the first criterion. We will then
place a constraint on the timing delays to formalize the second criterion.

4.4.1. Characterizing denseness

Definition 1. For any network that can be reduced to the form
T, = Term, ; (STREAM, #Term,) ; T,
for small 7 and v, we say that x is (7, 7)-dense.
This definition establishes when a signal source (there is no input in this network)
is considered (v, 7)-dense. By “dense” we mean that the network continually produces

signal values. The ¥ and 7 are the timing characteristics for the network. It is realistic
to expect that the transit from input to output will incur some small, bounded delay.
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This delay is modeled by the Term process, which we define as follows: Term waits
for an arbitrary time duration between 0 and its argument, and then terminates. Once
a new value is calculated, it will be “locked in” for a time so that other networks can
read it. STREAM never terminates on its own; it continually offers output on its port
(see its definition in Section 4.1.2). The Term, process will terminate, however, after
at most a time 7. Thus, through the disabling composition, “#”, it terminates STREAM.
This produces a discrete signal as shown in Fig. 4. (This is nor a periodic signal in the
standard sense [30]. It is, however, bounded by a periodic square pulse train of period
¥ + 7 and duty ratio 7/(r +y).)

We also need to consider the case when a value is transformed by a network. So given
a (i, ri)-dense value on an input port x, for what kinds of network that transform that

value onto a value on the output port y do we consider the value on ¥ to be dense? This
leads to our next two definitions:

Definition 2. For any network that can be reduced to the form
T = IN,(v) : (Term,,; (STREAM,, f(,y#Term,,)) ; T

for small values of 70 and Yo and a continuous function f then y is locally (yo,r0)-
dense with x.

A process being locally dense on a port means that the internal transfer of information
from input to output conforms to our intuition of denseness.

Definition 3. If an input port x is (vi, 7i)-dense and an output port y is locally (ye, 70)-
dense with x then y is (vi +yo, MAX(7i,70))-dense.

This says that in composing dense signals, the signal delays add in the resultant signal,
and the resolution factor of the result is the same as larger of the two resolutions.

These (y,7)-denseness definitions can now be applied to a model of the environment
to find the characteristics associated with environment dynamics. They are applied as
indicated at the end of Section 4.1.2: rewriting networks so that all “local” processing,
processing that doesn’t refer to the output and/or input ports in question, is hidden
and treated simply as a time delay (modeled for example by Term). We can use the
denseness definitions in two ways. Firstly, we can use them to filter out processes
that cannot be utilized in our ITL reaction generation approach. This is essentially a
qualitative approach, since we don’t need to know the values of r and %, just that the
process is of the right form. But we can also use these definitions in a quantitative

way, to ensure a stable mating between the timing characteristics of reactions and the
environment in which they operate.

4.4.2. Denseness constraints for reactions
We say a reaction is sufficiently dense with respect to a port in the model of the envi-

ronment if that reaction generates or consumes data more quickly than the environment
does.
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Let us assume that the environment model provides data, for example the position of
an object, on a (ye, 7e)-dense port, p. Let us assume that values on p are consumed by
a reaction that is (yr,7r)-dense. For the reaction to be sufficiently dense with respect
to this environment, we demand that the bounding period of the reaction be less than
that of the environment, i.e., that 7r + yr < Te + ye.

In the case that the reaction is writing to p, rather than reading from it, then we
additionally constrain the reaction to enforce yr < ye. This ensures that from the point
of view of the environment, the reaction is always ready to produce new data.

Under what time constraints can this combination of environment and reaction be
considered stable? We will consider the system stable if the reaction is sufficiently
dense, i.e., able to generate responses at a faster rate than the environment can change.
Thus, if it can follow the amplitude of the changes in the environment, the reaction will
indeed provide a stable behavior, by undoing the (assumed small) deviation in a single
correction step each cycle.

If, on the other hand, the controls become saturated or the amplitude of the changes
is large enough to lose sensor coverage in a single environment change, the interaction
pattern gets broken. Saturation is a difficult subject in control theory in general, and, in
our work, the implicit assumption is made that this doesn’t occur.

If these denseness constraints are met, we can abstract from the interactive generation
or consumption of data. Thus, the ITL description just needs to mention that the port
“carries” the information. For the examples in this paper, we will employ denseness to
filter out dynamics that cannot be used in our ITL reasoner. We will assume, however,
that the timing characteristics of the reactions do ensure that they are sufficiently dense.

5. Detailed examples of exploiting dynamics

Sufficient structure has now been established to apply the proposed approach to some
detailed examples. The following examples are from the kitting robot domain. The first is
the tracking example introduced back in Section 3.3. Subsequent examples build on this
one. The guarded motion example introduces motions of the robot to acquire an object.
The belt example introduces environmental motions that can be exploited to acquire an
object. In each case, the environment will be specified as a set of RS network definitions,
the limitset concept used to find useful dynamics in this environment, and action schemas
generated by combining these dynamics with the sensory-motor capabilities of the agent.

5.1. The tracking example

The RS network to implement the environment model for the tracking example
discussed previously is presented below. The model is comprised of a set of mutually
recursive process equations. The topmost process is the TEM (for tracking environment
model) network. Its parameters are the initial position of the object to be tracked p, and
the camera angle a. For simplicity, the select port has been omitted from the camera
model; this allows us to focus more directly on the reactive portion of the problem. We
will assume for now that the camera only recognizes objects of the desired type.
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TEMp,q = (Object, | Camera,),
Object, = (STREAM,, ,#Delay,,) ; Ran_,.(y) : Object,,.,
Camera, = (Monitor,,#Ing;,(na)) : Camera,,, (5)

Monitor, = (Delay,; INgp(p); Delay,,) :: (InView,, : ReportPos,),
ReportPosp 2 STREAMPM,,,,,#Delay,ﬂ.

The basic process Rany ;, is defined as producing an arbitrary result value between [ and
h. Ran is being used here to model the uncertainty in object motion. Thus, Object

continually repeats the following behavior: it offers its current position p for a time 0
on the port op, and then “moves” (updates its position) some arbitrary amount between
+& and —e relative to p. Camera, is continually checking (via Monitor) for any
object in view at the current position, while concurrently being ready to accept a new
position and repeat the behavior for that position. Monitor polls the position data from
Object processes and spawns off a subnetwork to determine if the object is in view and
passes on the position data if it is. The process InView carries out the calculations to

reasons explained later.)

The TEM model describes the environment itself, However, the agent interacts with
this environment through its sensors and actuators. These sensors and actuators may
impose limitations on this interaction, so we need to model them also. We will assume

the sensory-motor interface is defined by the two processes sense1 and motorl defined
as follows:

sensel = (INpox(v);Delayx,) o (STREAH,LD#Delay,,),

motorl = (IN,, (u);Delaygm) ot STREmng;,,u#Delaym). ®
These primitive “actions” affect or are affected by parts of the environment model,
i.e., sensel is affected by pos and motor1 affects angle. There is an important issue
of style here that needs to be emphasized: the agent does not invoke whatever effect
motorl has on the environment by creating an instance of motori. The action is
invoked by writing a message on motor1’s input port m1. A single instance of each of
sensel and motor1 is always present and these constitute the sensory-motor interface.
Each is in a loop, continually reading a value and passing that value to/from the
environment.

The timing delays in these actions, gl, tI, gm, and tm, model the timing delays in real
sensor and effector hardware. These actions have been given neutral names, rather than
names such as “movecamera” and so on, to reinforce the fact that they do not constitute
actions usable by the ITL planner. Rather the combination of one of these actions plus

some dynamic extracted from the environment is what is presented to the ITL planner
as an action,
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The environment model and sensory-motor interface have now been described. Any
specific environment and agent will be characterized by an instance of TEM with its
initial parameters and instances of sensel and motori, eg,

ThisWorld = TEMpinitainir | Sensel | motor1 (7)

where pinit and ainit are constants.

Notice that all these networks produce values on ports in a discrete fashion. For
example, the port pos does not present a continuously changing value, rather it holds a
value that changes in discrete time increments of #50. The value 750 models the rate at
which object position information changes in the environment. In contrast, the timing
delays in sensel and motor1 model the rate at which the agent’s sensors and actuators
interact with the environment.

The next step is to proceed with extracting dynamics from the environment model.
As discussed in Section 4.3.1, this is done by looking at the limitset of the environment
model network assuming that the sensory input processes (and any recursive calls) are
pseudo-bounds. This produces the following set (the mechanization of this operation is
described in Section 6):

limitset(TEM,,) ={ (y € [—e, €] TEMp100),
(OINangle(na) sTEMp na)

(8)
(inview(p)  ,TEM,, | ReportPosp)

The first element of the limitset tells us that left on its own (no conditions) the object
process may “move” (i.e., the location value that it transmits may change). The second
element tells us that changing the value on the angle port changes the camera position.
Let the termination condition of the process InView be written as inview(p). The final
element tells us that if the predicate inview(p) holds then the port pos holds the value
of the object position. We are now in a position to combine the information on the
dynamics in the environment with the basic sensory and motor definitions, based on
what will provide dense information, and generate a set of high-level abstractions for
ITL.

Based on Definitions 2 and 3 and the assumption that tm and gm are small enough,
we can say that if the value on angle in motor1 is dense, then so is the position of
the camera. Therefore we can add an ITL actionschema MOVECAMERA (a) with the
formalization as given earlier in Section 4.2. When MOVECAMERA (a) is applied on
an interval [ then the position of the camera in that interval is always the same as the
value set in a.

Now considering pos, we can say that if inview(p) holds, then pos reflects the
position of the object. But is it (y,7)-dense? TEM employs an asynchronous recurrent
composition (the “::”) to spawn off a ReportPos process to report on the position of
the object. Our denseness definitions were based on a simpler recursive form. (We have
to use the asynchronous composition for ReportPos to appear as part of the limitset.)
As it happens, the denseness of the asynchronous form can be related to Definition 2 as
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Fig. 5. The tracking reaction.

long as the signal is periodic and we “sandwich” the input process between two delay
processes as shown in Monitor. This result is demonstrated in Appendix A. A more
general result can be obtained at the expense of a slightly more complex environment
model.

Thus, by Appendix A, pos is dense if the position reported by the object is dense
and if the object is in view. Definition 1 establishes that the position reported by the
object is dense. Thus, the abstract ITL action LOOK(p), defined as in Section 4.2, can
be constructed: If LOOK( p) holds on an interval I then if the object is in view, then
the value of p is the value of the position of the object.

From these candidate actions, it is straightforward for the ITL planner to construct
the TRACK reflex to maintain an object in view. This consists of running the LOOK
and MOVECAMERA actions concurrently with their ports connected. Translating this
ITL specification back into RS produces the network:

TRACK = (LOOK, | MOVECAMERA, ). (9)

The mechanization of this example is reported in Section 6,

3.2. The guarded motion environment

The guarded move environment model GEM is shown in Fig. 6. This is similar to the
tracking environment except that we now additionally represent the robot itself and a
tactile sensor mounted on the robot’s gripper. There is an additional control port that
allows us to incrementally move the robot, and an additional sensor port that reports
back when an object has been contacted.

The objective in this example is for the robot to acquire the object. To do this, it
needs to reach out by incrementally updating its position in the direction of the object,
and when the tactile sensor indicates that contact has occurred, to grasp the object.

The RS network to implement the environment for the guarded move environment

is the set of process equations for the tracking environment plus the equations given
below:
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Fig. 6. The guarded motion environment GEM.

GEM; o, = (TEM, 4 | Robot,, | Tactile | Dist),

Robot, = (IN.(8) # STREAM,, ) ; Robot, s,

Dist = (INgy(pl) | IN,(p2)) =3 OUT4p1—po, (10)
Tactile = (Delay,,; INd(u);Delaym) © ('.E.qualul0 : ReportTact,),
ReportTact, = STREAM,y ,#Delay, .

The highest-level process is GEM and its arguments are the initial object and camera

positions and the initial position of the robot arm. #0 and 1 are constant values, timing
characteristics of the model.

The additional basic sensory-motor interface processes we need are now:
touch = (INyq(v); Delay,,) :; (STREAM, #Delay,, ),
move = (IN,(d);Delay,,,) :; (STREAM, ;#Delay, ). Lty

We can build on the tracking reaction established in the previous section. The tracking
reaction ensures that the object always remains in view. This in turns establish that
LOOK(p) always returns the object’s position. To determine what other high-level
actions we can construct, we need to again identify dynamics in the environment model.

This gives us the following set (duplicating partially the results from TEM):

limitset(GEMpapr) ={ (y € [—8,e] GEMp 1y.apr)
(QINangfe("a) s GEMp napr)
(inview(p) s GEMy 4 pr | ReportPos,),
(QLIN,.(8) » GEMp g pres).
(dist(p,pr) =0 , GEM, o, | ReportTact,)

(12)

).

The first three entries parallel those of TEM. The fourth entry reports that sending a
value of & to the rc port will cause the robot to move & from its current position. The
final entry claims that when the distance between the robot and the object is zero, then
the tactile sensor will signal a 1. This is sufficient to allow us to construct a high-level
process CONTACT whose behavior is to terminate whenever the tactile sensor signals a
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Fig. 7. The guarded motion reaction.

contact. However, our definitions of denseness are not sufficient to allow us to build a
MOVETOWARDS(r) action that we can connect with a concurrent LOOK(p) to push
us towards the object. We are missing the notion of approximating continuous increasing
or decreasing values. This motivates the following definition:

Definition 4. For any network that can be reduced to the form
Ty = Term, ; (STREAM, ,#Term,) ; Tyss

for small values of 7 and v then x is
(1) (y,7)-densely increasing if § > 0,
(2) (y,7)-dense if 6 =0,
(3) (7,7)-densely decreasing if & < 0.

Definitions 2 and 3 now need to be extended so that they “transfer” the densely
increasing/decreasing properties also. If Definition 4 is used along with the others
in our generator of high-level actions then we can suggest some interesting new ac-
tions. The third entry in the limitset combined with move tells us that for a positive
value, r will be densely increasing on robot position, suggesting a high-level action
MOVEUP(r). For a negative value, r will be densely decreasing, suggesting a high-
level action MOVEDOWN(r). More interestingly, if r is p — pr, then it is densely
decreasing with respect to dist(p, pr), suggesting an action MOVET: OWARDS(r) and, if
r is pr—p, then it is densely increasing with respect to dist(p, pr), suggesting an action
MOVEAWAY(r).

We can now construct a useful reaction from these actions as follows. We make a
concurrent combination of LOOK(p) and MOVETOWARDS(r) with p connected to
r. We can tell from the descriptions of these actions that this will eventually produce
dist(p,pr) =0. We can recognize this fact with CONTACT and begin the acquisition at
that point. Let us assume an action ACQUIRE to complete the acquisition. Translating
this ITL specification back into RS we produce the reaction network:

GuardedMove = (CONTACT#(LOOK, | MOVETOWARDS, ) ); ACQUIRE. (13)
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5.3. The belt environment

The belt environment model BEM is shown in Fig. 8. This is very similar to the guarded
move environment except that we replace the Object process with a BeltObject
process. This process represents an object on the belt.

The objective in this example is the same as in the previous example: to acquire the
object. The interesting variation here is that the belt motion will carry the object to the
robot if it’s “smart enough” to take advantage of it.

The RS network to implement the environment for the belt environment is the guarded
move environment with Object replaced by BeltObject defined below:

BeltObject, = (STREAM,, ,#Delay, ) ; L8Ty, : Object,, . (14)

BeltObject is a version of Object in which the position of the object only increments
in a fixed direction and amount g in time #m0. Once the position of the object hits the
end of the belt, », the process recursion terminates, indicating that the object is now off
the end of the belt and no more position signals are generated. The process BEM},. . oy 18
the same as GEM but with Object replaced by BeltObject.

Applying the limitset approach to identifying dynamics, we get the following set
(duplicating partially the results from GEM):

limitset(BEMpq,pr) ={ (p<w» » BEMpy papr),
(QINangle(na> s BEMp,na,pr);
(inview(p) » BEMy o or | ReportPos, ), (%)
(QIN,(6) » BEMp o prys) ,

(dist(p,pr) =0, BEM, ;. | ReportTact,)
}.

The first entry tells us that as long as the position of the object is less than », then
the object will move incrementally in the direction w. If we look at this entry with
respect to Definition 3, then in addition to the actions we pulled out of GEM, we can
suggest a high-level action that is densely decreasing with respect to dist(p,pr) as long
as p < ». This high-level action is WAITFOROBJECT. The reaction generated for the
guarded move is equally valid in this environment. However, we can now also generate
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a reaction in which the robot waits for the part to arrive on the belt. This translates
to

GuardedWait = ( CDNTAC'I#WAITFUROBJECT) ; ACQUIRE.

6. Mechanization

This section contains a description of our prototype implementation. The purpose
of this implementation is to demonstrate that the mechanization of our approach to
identifying dynamics and constructing action descriptions based on them is indeed
possible. The implementation is an action generation module designed to fit into our
current planner-reactor framework, Its input is a world model described in RS, and
its output is a set of ITL action descriptions that the ITL planner can use to construct
reactions or reactors. This prototype implementation is in PROLOG.

The generation of actions from world models is completed in three steps: First,
the limitset of the world model is generated, to identify candidate dynamics in the
environment. Secondly, those dynamics that can be sensed or affected by the agents
SENSOrs or actuators respectively, are identified and selected. This set is further reduced
by considering only those dynamics that convey port information in a manner compatible

with our definitions of denseness. Finally, ITL action schemas are generated from this
reduced set of dynamics.

6.1. Limitset generation

Recall from Section 4.3.1 that a limit of a process P is a process that P has evolved
into and which will not evolve into anything further; it “caps” the evolution of P. The
limitset of P is a set of couples, one for each limit of P, containing the limit and the
conditions under which P will evolve to that limit.

The concept of process evolution is central to the definition of the limitset of a
process. The easiest approach to implementing the limitset function is to implement
evolution as simulated execution. Evolution is defined in [17] in terms of the simulated
execution of each composition operator and the conditions under which basic processes
terminate. This definition is easily implemented in PROLOG. To do this, of course, we
need to construct a PROLOG notation for process names, parameters, and results and
for composition operations. To simplify this exposition, however, we will continue to
use RS notation for the PROLOG examples below.

The termination conditions of basic processes need to be supplied as an input to the
implementation. We do this with the predicate stopcondition(T,1,0,C) defined for each
basic process T, where | and O are the parameter and result lists of the process, and C is
the termination condition (which may contain references to the parameters or results).
These condition statements will eventually be used as part of the executability conditions
and effects of candidate actions.

Here are the PROLOG definitions of the stopcondition predicate for some of the basic
processes we have used in this paper:
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stopcondition( Delay,[T] , _ , duration(T) .
stopcondition( Ran ,[L,H] ,[N], (N=random(L,H)) ).
stopcondition( In  ,[PN] [N], (N=commin(PN)) ).
stopcondition( Out  ,[PN,V], -, (commout(PN)=V) ).

The first statement establishes that the termination condition of Delay; is the condition
duration(T). In this case, we interpret duration(T) as that a time 7T has passed. The
termination condition of Ran; y(N) is that the result N is set to an arbitrary value
between the values L and H. The termination condition for Inpy(N) is that the result
N is set to whatever communication arrives on the port PN. The termination condition
for Out is interpreted similarly. These termination conditions need to be predicates that
can be understood or translated by the ITL planner.

The evolves predicate ev() can now be written as follows, based on the stopcondition
predicate and the definition of evolution in the Appendix.

ev( Np(R) ,STOP,C) :- stopcondition(N,P,R, C).

ev(X;Y ,Z ,C):-ev(X,STOP,A), ev(Y,Z,B), C=A.B.
e XY 2 CLs ev(X,STOP,A), ev(Y,Z,B), C=AB.
ev(X:Y ,Z ,C):-ev(X,ABORT,C), Z=ABORT.

and so on for X | Y, X#Y, X:;Y and X::Y. The notation A.B indicates the temporal
ordering between conditions A and B.

A process may evolve to more than one other process, so sometimes we will need to
return a list of processes and conditions. For example, in the network P#Q either process
could terminate first, so we need to return both possibilities. Applying the ev() function
to the TEM world model (suitably transcribed into PROLOG, of course) we get:

?- ev(TEM, ,,P,C).

Hi=] Object,, Camera,, ReportPospw.p‘” ]

C = [ (streamout(op,t0)=p) . (np=random(p-+e,p-e))
na=commin(ang)
duration(ts) . (p=commin(op)) . objectinview(p)

P and C above contain the same data as the limitset(TEM) shown in the previous section,
but in a different format. Each list element of P is a limit process, and the corresponding
list element of C is the condition under which that limit occurs. Notice also that ev()
only lists the element of the network TEM that has become a limit, this is more convenient
for generating action schemas than the limitset definition.

6.2. Selection of candidate dynamics

Having obtained the candidate dynamics, the next step is to determine which of these
can be influenced by, or can influence the agent. We accomplish this by looking at
the port connections between the sensory-motor interface of the agent and each of the
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dynamics. We define a PROLOG predicate sensible() (the dynamic can be sensed by
the agent)

sensible(D,P,N) :- basicsense(P), usesport(N,P), usesport(N,D).

That is, dynamic D is sensible by the agent using sensory process P and port N if P
is a basic sensory process and if P and D communicate via some port N. The predicate
effectable() can be defined similarly for basic motor processes. Note that applying these
predicates to the three candidate actions from the limitset analysis results in the first
dynamic, that of Object, being rejected, and the sensory and motor connections for
the second and third dynamics being identified.

7- effectable(Camera, P1,N1), sensible(ReportPos,P2.N2).

P1 = motori, P2 = sensel,
N1 = ang, N2 = pos.

To validly translate port communications into ITL, it is necessary to ensure that
the communications are dense in the manner we have already discussed. Definition 1
defines dense “output-only” processes. Definition 2 defines local, i.e., input-to-output,
denseness. Definition 3 gives the rule for determining under what conditions a locally
dense process is dense. Definitions 1 and 2 require implementing a syntactic scan of
the world model to determine for each process if it obeys the dense and/or local dense
definitions. This only need be done once and off-line. For now, we assume that this scan
has been done and we concentrate on implementing Definition 3: A process is dense if
it obeys Definition 1, or if it is locally dense on a port and that port receives data from
(if it’s an input) or transmits data to (if it’s an output) a dense process:

dense(IP,P) :- Iocallydense(lF’.OP,P),usesport(OP.DP).not(DP:P), dense(OP,DP).
dense(OP,P) - Iocallydense(lP.OP,P),usaport(lP,DP).not(DP:P), dense(IP,DP).

To finish the selection of candidate dynamics, we use dense() to ensure that the candidate
dynamic is dense on the port returned by sensible() or effectable(). In this case, both
are. In our current system, this is the only use that is made of the duration information.
After this step, the duration information is dropped from all conditions.

6.3. Generation of action schemas

The final step is to generate the ITL action schemas from the candidate dynamics.
An ITL action schema has the following fields:

Name

Input Port and Basic Sensory Process
Output Port and Basic Motor Process
Temporal intervals used

Executability

Effects
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Most of these are straightforward to fill in from the description of the dynamic and
its associated sensory-motor connection. The executability condition is derived from
the condition element of the dynamic. For example, the condition on the ReportPos
dynamic is duration(ts).(p = commin(op)).objectinview(p). After some cleaning up
(described in the following paragraph), this roughly translates into saying that there
should be an object in view. The effect comes from the limit process element of the
dynamic, ReportPos in this example. However, this latter is a process. It is necessary to
have a predicate effects() that translates a process into a language that the ITL planner
can use, namely, a form similar to the condition generated by ev(). The mapping from
process to effects, like the stopcondition predicate, needs to be supplied as input for
our mechanization. For example, the effect of the process Camera,, is that the camera
position is set to na, and any object that is at position na is now in view. The effect of
ReportPos, , is that the object position is reported on port p.

There is also some minor housekeeping to be done. ITL actions refer to ports, not
to values on the ports. Thus whenever we have a v = commin(p) or commout(p) = v
statement in a condition or effect, we need to replace all occurrences of the variable
v with p throughout the rest of that condition. We can then remove the commin or
commout from the condition. The condition for the ReportPos dynamic then becomes
objectinview(op) (duration has been dropped after the denseness step, op has been
substituted for p, and the commin dropped). Finally in all conditions and effects, we
replace references to all ports which are connected to sensory or motor ports, with the
name of the sensory or motor ports to which they are connected.

The following are the action schema generated by the two dynamics:

atp_actionschema camera-55 Input: [ m1 |
Output: [ ]
Intervals: [int-camera-55, int-54]
Executability:
objectposition(m1) @ int-54 and
ITL(int-54, [si,e,di,fi], int-camera-55)
Effects:
cameraposition(m1) @ int-camera-55 and
objectinview(m1) @ int-camera-55
endactionschema camera-55

atp.actionschema reportpos-57
Input: [ ]
Output: [ s1 ]
Intervals: [int-reportpos-57, int-56]
Executability:

objectinview(op) @ int-56 and

ITL( int-56, [si,e,di,fi], int—reportpos—ST)

Effects:

objectposition(s1) @ int-reportpos-57
endactionschema reportpos-57
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6.4. Extensions

The purpose of this implementation has been to demonstrate that mechanization of
the approach is feasible. The primary work was in mechanizing the limitset product,
and this was based on simulated execution using the evolves operator. The limitset
implementation is surprisingly robust, given its simplicity and the brute force approach
taken. It doesn’t explicitly know about variable or result scope, or about recursion,
yet in general it handles both of these in a satisfactory manner. This is not altogether
surprising for two reasons: Firstly, simulated execution is a technique already used in
many branches of computer science and is not that challenging to implement correctly.
Secondly, much of the work of interpreting the limitset results is actually done by
the ITL planner—the limitset implementation doesn’t worry about variable scope, for
example, because the ITL planner handles this in processing the executability condition
and effects derived from the limitset.

Nonetheless, the limitset implementation used here is simplified in that it doesn’t
reason about port communication between concurrent processes, and certain kinds of
recursion will trigger an endless loop. In [17], a set of limit theorems are developed
that directly relate the structure of the limitset and the structure of the process net-
work. Employing that approach to synthesizing the limitset promises a more efficient
implementation, and one which handles recursion in a more elegant way.

The connectivity analysis, to determine which dynamic is connected to which sensory
or motor port, is straightforward. Indeed, the entire processing could be done off-line
and accessed when necessary. The denseness definitions (Definitions 1 and 2) can also
be performed off-line, However, Definition 3 needs to be carried out for each dynamic,
It can only be done off-line at the expense of analyzing all possible connections. The
implementations of densely increasing/decreasing were not shown here, but can be
addressed in a manner similar to the implementations of Definitions 1 and 2; that is,
carried out off-line and accessed on-line,

The implementation of the denseness definitions is in progress. The approach is that
all processes in a process network that do not concern input or output on a port are
reduced to time delays. In the case that a process uses only one port, or a single input and
output port, the implementation is not difficult. In the case that more ports are involved,
the problem may be complicate, and we have not developed any general solutions yet.

7. Conclusions

We have presented an approach to identifying and exploiting dynamics—patterns of
interaction—in the environment. The work has been done in the context of, but not
yet integrated with, the planner-reactor architecture. The approach divides the problem
into two related sub-problems: Firstly, the environment model is analyzed to identify
dynamics. This analysis is carried out using the limitset concept from the RS model.
Secondly, the dynamics are used to construct high-level ITL actions, each representing a
process with inputs and outputs, that can be used to construct reactions. The concept of
the “denseness” of the information on a communication port is important for addressing
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the timing and continuity issues. ITL reasoning can then be used to select high-level
actions and connect them together appropriately. Although we did not pursue the deriva-
tion of the timing characteristics in reactions, we did lay the groundwork for it. That
information becomes important in real-time scheduling of the processes that implement
reactions.

There are a number of architectures in the literature similar to our planner-reactor
architecture: Bresina and Drummond’s ERE [4], McDermott’s Transformational Planner
[23] and Sutton’s DYNA [31] among others. The principle novelty of the planner—
reactor architecture is in the loose and well-defined interaction between planner and
reactor, and in the characterization of the reactor as a concurrent network of processes
using the RS language. These two features enable the formalization of the on-going,
iterative process of adaptation to explore the issue of the convergence of the reactive
system [19].

Our definition of the planner as incrementally generating reactions to exploit the
environment has few comparisons in the planning literature. Chapman [6] introduces
the definition of dynamics as acausal patterns of interaction. However, he does not
investigate the problem of analyzing an environment to derive dynamics. Schoppers
[26] addresses a problem very similar to ours. However, he chooses to make the
dynamics of the environment explicit in his action descriptions in terms of temporal
soon and sust operators. In our case, these dynamics are implicit in the process model
description of the environment, and are only identified by the limitset calculation.

Our approach means that it’s not necessary to be aware of the agent’s objectives when
constructing the environment model; no action repertoire needs to be modeled, justified
and qualified a priori. Rather, the on-line construction of reactions based on the current
environment enables an agent to achieve its objectives using environment dynamics
which may only partly be in its control. The generated reactions capture “closed loop”
control law behavior, derived from “open loop™ actions. This context-sensitive abstraction
of repetitive behavior is a major contribution of this approach.

We earlier made the comparison with Horswill’s habitat constraints and his language
of equivalence transformations to simplify agents so as to exploit their environment. Our
limitset analysis allows us to derive dynamics that do work the agent may want to do
and offer these as candidate portions of reactions. It does not address equivalence in the
sense Horswill does, and it may be possible to enrich our system by developing analogs
of his transforms in our limitset analysis.

There are two drawbacks to the approach. It presumes that a (possibly partial)
model of the environment can be put together beforehand, and its usefulness hinges on
the environment having dynamics to exploit that are relevant to the agents objectives.
The latter, we argue, is a reasonable “richness” assumption to make about “real-life”
environments. The former can only be addressed by learning.

Future work needs to address the following points:

(1) Focusing in on a set of environment processes given the planner’s objectives
and constructing a subnet of the environment from these. (The Snet algorithm
discussed in [17] may be of use in this problem.)

(2) The planner-reactor policy of assumption relaxation needs to be incorporated.
Assumptions are a second way to limit the size of the subnet of the environment
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model under consideration. However, the reactions chosen will need to obey the
convergence constraints for the planner-reactor developed in [19].

Appendix A. Denseness for asynchronous composition

The following lemma and theorem establish a denseness result for asynchronous
recurrent composition. We will show this result only for the periodic case (where delays
of exactly y.and 7 are incurred). The same results can be proven for the non-periodic

case (where y and 7 are upper bounds) at the expense of a slightly more complex
network.

Lemma 5. For the network
ST = (IN:(v); Delay,,) :; (STREAM,, fuy#Delay, )

for small values of yo and ro and a continuous Junction f then if y is (yi, ri)-dense
then x is (yi+ yo, MAX (i, T0) )-dense.

This is straightforward to show, since the ; operator is defined recursively. Applying
its definition to the network of Lemma § yields the exact form of the network in
Definition 2. More difficult to show, and more useful in our case, is the next theorem:

Theorem 6. For the network
AT = (Delay, ; INx(u);Delayw) :: (STREAM,, f»y#Delay,_ )

for small values of yo and ro and a continuous function f then if y is (i, 7i)-dense
then x is (yi + yo, MAX( Ti,70) ) -dense.

The two 7o delay processes end up being activated in parallel. Output then ceases,
input happens, and yo passes before the next output. Thus, the delays sequence the
IN process to begin only once the previous STREAM network has been terminated. This
allows the reduction of AT to the form ST which Lemma 5 establishes is dense.

Appendix B. Definition of one-step process evolution

The following definitions capture one-step evolution. All process terminations below
are of basic processes,

& i T i
opd STOP (definition of termination condition).

P s .
e P A ABORT (definition of abort condition).

e Sequential: P ; Q nP—VPP Q

e Concurrent;

- @) "B P | @) iff PSP and 03 @ (where m(cl,c2,...) maps
a set of conditions onto the disjunction of all their orderings).
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- | Pi — ABORT iff all the processes abort, ¢ = AUPI.
i€l iel

E l Pi — STOP iff at least one process terminates successfully,
i€l

¢ =( A\UPi) A ( AOP)),

€A Jjes

where AUS=I, ANS=0and S # 0.
e Conditional:

- PG A Q;, and

- p(i) : 0, ABORT.
Different behavior on termination versus abortion is what makes this operator
“conditional”,

e Disabling:

- (P#Q) "B (prag) iff P<B P> and 95 g,
- s ABORT iff all processes abort.
i€l '
- #Pf — STOP iff at least one process terminates.
il
Note that disabling composition can force a component process to abort. Thus, com-
ponents of disabling composition need to have their abort conditions extended to include
the cases under which the network forces them to abort. It is important to distinguish
these (necessary and sufficient) extended conditions DA from the (necessary) sponta-
neous conditions UA. The relationship between these conditions is, for A in a disabling
network with P1,P2,. ..,

CA=UAV (\/ (UPvaP)). (B.1)
Piza
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