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Motivation: It is estimated that the world population will increase from 7.8
billion in 2020 by over 24% to 9.7 billion people in 2050 [21], and it is a global
challenge to keep food production pacing this growth. Agricultural robotics
has been put forward as a way to address seasonal shortages in labor, quality
of fresh produce, lower production costs, enable more environmentally friendly
practices, and reduce drudgery [17, 19, 15, 10, 4, 4, 23]. Robotic systems have
been proposed for fruit picking [30], harvesting lettuce [6], identifying areas
of weeds [7], automated tractor steering for tillage and planting [5], moving
materials [20] and others [4, 3].

A popular approach to the challenge of robotic agriculture is to leverage
“Precision Agriculture” [19]: Gathering and analyzing spatial and temporal
data, often satellite imagery [31], to target actions that improve agricultural
productivity. This approach is similar in inspiration to the way robots are tra-
ditionally used in manufacturing — structured spatial organization and assembly
line processing. This lends itself well to large agribusiness and to monoculture
farming — that is, specializing in producing large quantities of just one, or a small
number, of kind(s) of produce. Monoculture farming allows the application of
machinery to increase the efficiency of planting and harvesting and currently
provides the lion’s share of world food production [2]. However, monoculture
farming has many disadvantages: increasing risk of disease and pest outbreaks,
large amounts of pesticides, and soil exhaustion. The 1970 corn blight ruined
more than 15% of corn crops in North America — because 70% of the crop being
grown was the same high yield variety [13]. The European potato blight (Phy-
tophthora infestans) of the mid 1840’s caused extensive damage in Northern
Europe, causing a million deaths in Ireland alone [33].

There is an alternate vision for agricultural robotics, where robots are used
on small and family farms to allow alternatives to monoculture farming to com-
pete with big agribusiness. The Digital Farmhand platform (Univ. of Sidney)
is a low-cost, flexible-use platform specifically targeted at small farmers [29].
Livestock farming, especially in developing countries, is an essential small farm
activity. The Univ. of Sidney Swagbot [11] is a novel platform designed for herd-
ing and ranching. It has a raised body with four independently driven wheels
designed for locomotion on off-road terrain and unstructured environments. Fur-
thermore, the robot is equipped with sensors to monitor the condition of the
pastures and livestock it encounters. It is designed to launch a drone from its
back as part of a collaborative herding process, [12], with the drone guiding the
robot to locations of interest, though for now, a GPS-based tablet interface is



used.

This approach comes with the challenge of operating under highly unstruc-
tured conditions, in particular changing temporal and spatial conditions: “to-
pography, soil structure and composition, vegetation landscape, visibility, illu-
mination, and atmospheric conditions change at rates varying from seconds to
months and on scales from millimeters to kilometers.” [4]. The livestock herd-
ing and grazing application is a good example, where robots would have to
traverse difficult terrain in various seasons and weathers and often have to work
with livestock where they are found rather than in designated or structured
locations. There are many parts to meeting this challenge: the construction of
the platform, algorithms for effective locomotion, design of sensors, interpreta-
tion of complex, natural imagery, communication backbone, flexible and robust
wide-area navigation, interaction, and cooperation with other robots and with
farmers. In this work, we will focus on a specific but significant require-
ment for this kind of application: the flexible and robust wide-area
navigation required to handle the navigation of robots to distant live-
stock and other task locations despite the changing visual appearance
of the landscape due to weathers, seasons, and growth of vegetation
and crops.

Motivating Example: Consider the herding example of [12], with herding
robot and associated drone. Some livestock have broken from the herd and
need to be returned. The drone has found the distant animals but needs to let
the robot know where they are so they can be returned to the herd. A typical
approach to this problem would have the robot and drone construct a merged
map as follows [27, 25, 1, 9, 28, 26, 22]:

e Both robot and drone must engage in exploratory actions, repeated at reg-
ular intervals, to construct their local maps [16]. The exploratory actions
take the robots away from herding the livestock.

e The least complex map merging approach uses GPS to localize the robot
and drone. However, researchers have shown that continual GPS is un-
reliable in an agricultural setting [3], which has proven a challenge for,
e.g., automated tractor control in planting and harvesting and moving in
orchards and forested areas.

e The robot can now path plan from its map. The path is only as good as
the map information from prior exploratory actions. It may be outdated in
this dynamic environment - perhaps a rainstorm resulted in debris blocking
the path, ultimately causing traversal delays or failures.

e Once the robot arrives at the goal location, it will need to locate the
missing animals, assuming they are still in the vicinity. Treating the goal
as a map position was a shortcut: the goal is the animal’s location.

Proposed Approach: We (Lyons and Rahouti) propose an alternate ap-
proach that addresses the changeability of the environment by focusing on map-
less, visual coordination between team members - the robot and drone in this
case [24, 18]. Map construction and use is a hugely important functionality for
navigation, but we propose an additional robotic capability or functionality to



handle this kind of agricultural navigation. We propose an alternate approach
that addresses the changeability of the environment by focusing on map-less,
visual coordination between team members - the robot and drone in this case
[24, 18].

e Rather than using locations as navigation goals, we propose to use visual
homing [32, 14, 34, 8] - an approach to move a robot to the vicinity
where its imagery matches a goal image. This replaces the map position
‘shortcut’ with the actual objective of the task - move to the vicinity of
the livestock.

e Rather than planning a navigation path in Cartesian 'map’ space, we
propose to plan the path in the space of shared, currently visible, visual
landmarks between cooperating robots. This is a smaller space, restricted
by the current line of sight visibility to currently unblocked and identifiable
‘roadways’ from each robot to the common landmark.

e Navigation is the process of identifying a sequence of common landmark
images between pairs of robots (just two in our example) ending with
the goal image. Visual homing is used to move to the vicinity of each
landmark in turn and then to the final target.

To build the proposed approach, we address the following in this proposal:

1. Identification of candidate common landmarks within the visual field of
each robot, with the criteria that the landmarks must be identifiable from
another robot and should present a stable navigation target.

2. Communication of visual information between a widely distributed, het-
erogeneous robot team, with the criteria that the robots will not always
be in contact and may contain errors.

3. Path selection in the space of common landmarks with the criteria of
computational efficiency, timeliness, and robustness with respect to path
segment failures due to environment uncertainty.

4. Navigation of a robot (or a group of robots) to a visual goal within its
field of view where that goal has been constructed from an image taken
by a different robot.
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